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Highlights

• The Poisson’s ratio limitation of classical LSM is released by introducing an extra fourth-dimensional interaction.
• The method of constructing 4D lattice spring model is presented.
• The method of parameters selection is provided.
• The underlying principle is investigated using hyperelasticity analysis.

Abstract

In this work, a four-dimensional lattice spring model is developed for studying the mechanical responses of solids. Our results
indicate that the Poisson’s ratio limitation of the classical lattice spring model defined in three-dimensional space can be released
by introducing an extra fourth-dimensional interaction. The fourth-dimensional lattice spring model adopts central interactions
only, and it can naturally represent the nonlinear dynamic responses of solids without special treatment of rigid body rotation
or incremental integration of non-central/non-local interaction as used in the traditional methods. Applicability of the model is
illustrated from a few numerical examples.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Mechanical responses of solids provide important foundations for many scientific disciplines. As examples,
Poisson’s ratio of materials remains a subject of study in materials science more than two hundred years since
its discovery [1], the dynamic fracture of brittle solids is regarded as the key to understanding the mechanism of
earthquakes in the geosciences [2], and dynamic large deformation responses of solids are essential in the design
and control of new machines such as soft robots in mechanical engineering [3]. With the advancement of computer
science, numerical models now provide powerful tools in the study of mechanical responses of solids. The ultimate
goal of a numerical model for solid mechanics is to build up virtual solids that can realistically reproduce the responses
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of their physical counterparts while maintaining the simplicity of the model. Although many numerical models have
been developed, we are still far away from achieving this goal.

Divide and conquer is the most commonly used strategy in the development of numerical models. There are two
commonly adopted methodologies. The first is based on the top-to-bottom concept, in which the partial differential
equations of the corresponding mechanical problem of solids are first constructed macroscopically and numerical
techniques are subsequently used to mathematically solve these equations through spatial discretization of the target,
e.g., the finite element method (FEM) [4] and the natural element method (NEM) [5]. Another group of numerical
models adopt the bottom-to-top approach, in which the target is divided into a group of small elements and the
mechanical responses of the target are mimicked using physically based laws such as Newton’s second law and the
laws representing the interactions between the corresponding numerical elements. The molecular dynamics (MD) [6]
technique that tries to mimic the response of a system based on a group of simulated atoms and/or molecules is
the representative one of this kind of approaches. Another well-known model is the discrete element model (DEM)
developed by Cundall and Strack [7] to simulate the responses of granular materials using groups of spherical particles.
Among these bottom-to-top methodology based models, the lattice spring model developed by Hrennikoff [8] in
1941 is a commonly ignored approach that represents the solid as a group of mass points linked through springs
to describe the mechanical responses of solids. This lattice spring model reduces the mechanical problems of
solids into a series of 1D interactions. In this sense, it is simple and should be an ideal candidate for building up
virtual solids. However, the lattice spring model is intrinsically limited in that it can only solve elastic problems
with a fixed Poisson’s ratio. Numerous techniques and models have been developed to overcome this limitation,
including the Born spring model [9], the beam element model [10], the multibody shear spring [11], and the nonlocal
potential [12]. However, introducing noncentral or nonlocal interactions between particles gives rise to additional
complex mathematic calculations and incremental integration that might introduce additional sources of accumulative
error. All these effects disrupt the simplicity and robustness of the lattice spring model for modelling mechanics
problems of solid.

In this work, by utilizing the extra dimension concept, a fourth-dimensional (4D) lattice spring model is developed
to overcome the Poisson’s ratio limitation of the classical lattice spring model defined in three-dimensional space
while still maintaining a purely central interaction to preserve the model’s simplicity. Fourth-dimensional interaction
is considered on the basis of a hyper-membrane constructed using a parallel world concept. The topological structures
of the 4D lattice spring model and selection of material parameters are studied via numerical simulations and
hyperelasticity analysis. The obtained results show that the 4D lattice spring model can solve elastic problems with
various Poisson’s ratios. Moreover, we demonstrate its potential for solving complex solid mechanics problems from
a few examples.

2. The model

2.1. Fourth-dimensional lattice model

In classical physics, such as general relativity, there are three spatial dimensions, with time as the fourth dimension.
To unify the four fundamental forces in nature, some researchers have proposed five dimensional space-time,
e.g., Kaluza–Klein theory (KK theory) [13], in which one extra spatial dimension is introduced. The concept of
extra dimension has long been regarded as a fascinating subject in theoretical physics [14]. In this work, inspired by
the KK theory, we view solids in 3D space as mappings of hyper-membranes from 4D space. It should be mentioned
that our world is three-dimensional from our common sense. Yet, like in the Plato’s cave allegory, we cannot prove
that the world has extra dimension until we could escape from the cave (our 3D world), which seems impossible.
Fortunately, using a computer, a virtual hyper-membrane in 4D can be constructed from a lattice and its responses can
be studied through the numerical simulation. Nevertheless, our goal is not to perform a mind test through the computer
simulation but rather to construct a lattice model for solving mechanical problems of solids.

A hyper-membrane in 4D space can be easily formed using a parallel world concept by linking an object in
the observed 3D space to its parallel version in the fourth dimension. They are closely connected through fourth-
dimensional interactions. It is assumed that the original and parallel versions have the same material properties and
boundary conditions. The construction process and components of the 4D lattice spring model are illustrated in Fig. 1.
As shown in Fig. 1(a), a cubic lattice model in 3D space that can reproduce isotropic elasticity with a fixed Poisson’s
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Fig. 1. Generation of a 4D lattice spring model. (a) Original lattice model in 3D space for isotropic elasticity with a fixed Poisson’s ratio of 0.25;
(b) parallel version in the fourth dimension according to the hyper-membrane assumption; and (c) three types of 4D interactions to link the original
lattice model with the parallel model (plotted using a 4D spatial projection method).

ratio of 0.25 is extended to four dimensions. The cubic lattice model is constructed from two types of springs with the
same stiffness k: orthotic springs (e.g., AB) and diagonal springs (e.g., AC). Under the hyper-membrane assumption,
the 3D lattice model will have its parallel mapped version in the fourth dimension, as shown in Fig. 1(b). The distance
between the two models (the original and the parallel) along the fourth dimension is taken as one lattice constant.
For a given mass point A, the corresponding parallel version is denoted as A′. The parallel lattice model shares
exactly the same connection and spring stiffness of the original model; i.e. both orthotic and diagonal springs will
have corresponding parallel versions. The last step for the construction is to connect the original and parallel models
using 4D interactions (springs). Here, the rule is that one spring of the original lattice model (e.g., A–B) will generate
four corresponding 4D springs: (A–A′), (B–B′), (A–B′) and (B–A′). For a cubic lattice, three types of 4D interactions
occur (see Fig. 1(c)). The first interaction is to link the original mass points (A, for example) to its parallel copy
(A′) with spring stiffness denoted by kα . The second type of 4D interaction is formed from the orthotic springs with
stiffness denoted by kβ . The third type is formed from diagonal springs with stiffness denoted by kγ . It is difficult for
us to image and draw four-dimensional objects. Fortunately, we can plot the 4D analog (Tesseract) of a cube using a
standard 4D spatial projection method to help the understanding of a 4D lattice.

The original lattice, the parallel model and 4D interactions (springs) comprise the 4D lattice spring model.
Depending on the different configurations of 4D interactions, a number of 4D lattice models can be formed. The
most straightforward one is that all 4D interactions (springs) share the same stiffness as expressed by

kα = kβ = kγ = λ4Dk (1)
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where λ4D is the 4D stiffness ratio and k is the spring stiffness of the original model (referred to as the base spring
stiffness). Here, this lattice configuration is called the 4D Lattice (I).

The second version (4D Lattice (II)) is obtained by excluding the third type of 4D interaction from 4D Lattice (I),
as can be achieved by setting the stiffness kγ equal to zero, as expressed by

kα = kβ = λ4Dk, kγ = 0. (2)

In the third version, 4D Lattice (III), the motion in the fourth dimension is assumed to be fixed by setting the stiffness
of the first type 4D interaction as infinite, expressed as

kβ = kγ = λ4Dk, kα = ∞. (3)

Removal of the third 4D interaction from 4D Lattice (III) results in the fourth 4D lattice model (4D Lattice (IV)),
expressed as

kβ = λ4Dk, kγ = 0, kα = ∞. (4)

These models are the most straightforward 4D lattice configurations; new configurations can be generated by mixing
these. For example, rather than directly setting the stiffness of the third type of 4D interaction to zero, a reduction
coefficient (3/4) can be assigned, which will result in a modified version of 4D Lattice (I) denoted as 4D Lattice (I-m).
The mathematic expression for this lattice is

kα = kβ = 4/3kγ = λ4Dk. (5)

These models are described by two parameters: the base spring stiffness k and the 4D stiffness ratio λ4D for the 4D
interaction. When λ4D

= 0, the responses of these models will be the same as the original lattice model because there
will no longer be any connection between the original and parallel models.

2.2. Interaction and motion equations

In the 4D lattice spring model, the motion of mass points is assumed to satisfy Newton’s second law in the time
dimension and the interaction between mass points is represented as springs. In this work, the mechanical system of
the 4D lattice spring model is solved using the central finite difference scheme [15]. To obtain static solutions, we
adopt the local mechanical damping scheme developed for DEM [7].

The motion state of the mass points satisfies Newton’s second law and is written simply as

∂2x
∂t2 =

F
m

(6)

where ∂2x
∂t2 is the acceleration of the particle, F is the particle force induced from the linked springs and body force

term, and m is the mass of the particle.
In this work, when an index is used together with a vector symbol (in bold), it refers a vector of the particle with the

index; when two indices are used, it represents a vector between two particles with the two indices correspondingly.
An example is given as follows. In the 4D lattice spring model, force calculations are based on pair interactions and
only involve two particles. The interaction between two particles is given as

Fi j = kunni j . (7)

where Fi j is the force from particle i to particle j , ni j is the normal vector from particle i to particle j, k is the stiffness
of the spring and un is the deformation of the spring, which is calculated as

un =
x j − xi

 −

x0
j − x0

i

 (8)

where x is the current position of the mass point, x0 is the corresponding initial position, and |•| refers to get the
normal of a vector. The normal direction is calculated as

ni j =
x j − xix j − xi

 . (9)
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2.3. Parameters identification

The 4D lattice spring model can be regarded as a virtual solid characterized by two parameters: the base spring
stiffness k and the 4D stiffness ratio λ4D. Because the purpose of the model is to provide a numerical tool for modelling
the mechanical response of solids in engineering applications, parameter identification is conducted to link the two
mechanical parameters of the model to two commonly used elastic constants: the elastic modulus and the Poisson’s
ratio. In this work, a general procedure based on numerical simulations is used. As shown in Fig. 2(a), a virtual uniaxial
compression test is conducted for a cube with 20 × 20 × 20 particles using the 4D lattice spring model. During the
calculation, the Poisson’s ratio and elastic modulus are obtained according to their corresponding definitions.

A nonlinear relationship can be obtained between the Poisson’s ratio and the 4D stiffness ratio given by

λ4D = f (v) . (10)

This equation can be determined using nonlinear fitting of the corresponding numerical results; for example, for the
4D Lattice (I-m) model, the following polynomial equation is obtained:

λ4D = −211.13493779v3
+ 162.84655851v2

− 55.42449719v + 6.92902211. (11)

Eq. (11) indicates that, for a given Poisson’s ratio, the corresponding 4D stiffness ratio can be determined. The elastic
modulus obtained from numerical simulation is scaled with the lattice model in 3D space (λ4D = 0) and is termed
the elastic modulus increase ratio. Generally, linear relationships are observed between the 4D stiffness ratio and the
elastic modulus increase ratio (see Fig. 2(c)). The elastic modulus increase ratio under a given 4D stiffness ratio can
also be represented as

η = g (λ4D) . (12)

For better fitting, a high-order function can be used; e.g., in this work, a second-order polynomial equation is obtained
for the 4D Lattice (I-m) model:

η = −0.0078506λ2
4D + 0.41613615λ4D + 1.00369223. (13)

Now, for a given elastic modulus E and Poisson’s ratio v, the procedure for calculating the lattice parameters is as
follows. The first step is to obtain the 4D stiffness ratio using Eq. (10) with the input Poisson’s ratio. Then, with the
calculated 4D stiffness ratio, the elastic modulus increase ratio can be obtained using Eq. (12). For the 3D lattice
spring model (λ4D = 0), the corresponding relationship between the elastic modulus (at a Poisson’s ratio of 0.25) and
spring stiffness k3d can be obtained by using a strain energy equivalent concept expressed as [11]

k0 =
6VE

l2
i

(14)

where k3d is the spring stiffness, E is the elastic modulus, V is the volume of the model in 3D, and li is the
length of the i th spring. In the theoretical analysis, V is the representative volume and k0 is independent from the
volume. However, in the numerical simulation, V is the representing volume of the lattice model that could have
arbitrary shapes. Eq. (14) is obtained from a strain energy equivalent method. More details can be found in [11]. From
Eqs. (13) and (14), the corresponding base spring stiffness for the 4D model is obtained as

k =
6VE

η


l2
i

. (15)

2.4. Hyperelasticity analysis

In this section, the ability of the 4D lattice spring model to represent a variety of Poisson’s ratios will be
further investigated using hyperelasticity analysis. First, we assume that the hyper-membrane made up from
springs is spatially isotropic in 3D space and is homogeneous along the fourth dimension. When the small
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deformation assumption is applicable, the corresponding elastic matrix of the membrane can be obtained by using
the hyperelasticity analysis (Eq. (26)), which can be represented using four elastic constants as

Ω =



C1 C2 C2 C4 0 0 0 0 0 0
C2 C1 C2 C4 0 0 0 0 0 0
C2 C2 C1 C4 0 0 0 0 0 0
C4 C4 C4 C3 0 0 0 0 0 0
0 0 0 0 C2 0 0 0 0 0
0 0 0 0 0 C2 0 0 0 0
0 0 0 0 0 0 C2 0 0 0
0 0 0 0 0 0 0 C4 0 0
0 0 0 0 0 0 0 0 C4 0
0 0 0 0 0 0 0 0 0 C4


. (16)

Due to the membrane made from springs with central interaction only, the shear component of matrix (e.g. Ω(5, 5))
is equal to its off-diagonal component (e.g. Ω(1, 2)).

Applying the stress free boundary condition along the fourth dimension, we can further write Eq. (16) as



σ11
σ22
σ33√
2σ12√
2σ23√
2σ13

 = D1



1
D2
D1

D2
D1

0 0 0

D2
D1

1
D2
D1

0 0 0

D2
D1

D2
D1

1 0 0 0

0 0 0
D3
D1

0 0

0 0 0 0
D3
D1

0

0 0 0 0 0
D3
D1





ε11
ε22
ε33√
2ε12√
2ε23√
2ε13

 (17)

where

D1 = C1 −
C4C4

C3
(18)

D2 = C2 −
C4C4

C3
(19)

D3 = C2. (20)

Comparing Eq. (17) with the classical elastic matrix of isotropic elasticity, we can introduce two Poisson’s ratios:

v′
=

D2
D1 + D2

(21)

v′′
=

2D3 − D1
2D3 − 2D1

(22)

where ν′ refers to the Poisson’s ratio related to the bulk response and v′′ is related to the shear response. Theoretical
analysis of the Poisson’s ratios of the 4D lattice spring models can be conducted by extending the hyperelasticity
analysis procedure developed by Gao and Klein [16] which was also used by Zhang and Ge [17]. First, we assume
that a uniform strain deformation specified by εi j (i, j = 1, 2, 3, 4) is applied to the lattice model. Under the small
deformation assumption, the spring’s deformation can be represented as

un = ξiεi jξ j (23)
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Fig. 2. Relationship between the 4D stiffness ratio λ4D and elastic constants obtained from numerical simulation of a uniaxial compression test:
(a) computational model (strain and stress are calculated from average force/displacement values of the corresponding cubic specimen surfaces),
(b) relationship between λ4D and the Poisson’s ratio, and (c) relationship between λ4D and the elastic modulus increase ratio.

where ξ is the component of the spring’s normal vector n. The strain energy stored in the spring is then expressed as

U =
1
2

kl2ξiεi jξ j . (24)

The total energy stored in per unit volume of the hyper-membrane is

Φ =
2


U3D +


Uα +


Uβ +


Uγ

V ∆
(25)

where V is the volume of the hyper-membrane in 3D space and ∆ is the thickness in the fourth dimension. According
to hyperelasticity theory, the elastic matrix tensor can be expressed as

Ci jnm =
∂2Φ

∂εi j∂εnm
. (26)

For a given lattice model, the corresponding elastic constants can be determined from Eq. (26); the Poisson’s ratios
can then be obtained using Eqs. (21) and (22). In the following, both the cubic 4D lattice model and the 4D random
lattice model are investigated. Because the Poisson’s ratio is the main concern, the base spring stiffness k is taken as
one to simplify the derivation. For 4D interactions, the corresponding stiffness is taken as a ratio between k, which
leads the calculation as dimensionless. Using Eq. (26), for a cubic lattice with N × N × N mass points in original
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space, we can derive the corresponding elastic constants for the 4D lattice model as

C1 = 4N (N − 1)2
+ 2N 2(N − 1) + N 2(N − 1)kβ +

8N (N − 1)2kγ

3
(27)

C2 = 2N (N − 1)2
+

4N (N − 1)2kγ

3
(28)

C3 = N 3kα + 3N 2(N − 1)kβ + 4N (N − 1)2kγ (29)

C4 = N 2(N − 1)kβ +
8N (N − 1)2 kγ

3
. (30)

Using these equations, and taking N → ∞, we obtain the corresponding Poisson’s ratios as

v′
=

18kα + 54kβ + 72kγ + 12kαkγ − 12kβkγ − 9kβkβ − 16kγ kγ

72kα + 216kβ + 288kγ + 9kαkβ + 36kαkγ + 48kβkγ + 9kβkβ + 16kγ kγ

(31)

v′′
=

18kα + 54kβ + 72kγ + 9kαkβ − 12kβkγ + 18kβkβ − 64kγ kγ

72kα + 216kβ + 288kγ + 18kαkβ + 24kαkγ + 48kβkγ + 36kβkβ − 32kγ kγ

. (32)

From observation, v′
= v′′ when kγ = 3/4kβ , which is why the 4D Lattice (I-m) model can reproduce the isotropic

elastic responses.
Models with a general random lattice structure can also be easily extended to the 4D space using the same procedure

as that used for the cubic lattice model, except that no distinction is made between the second and third types of 4D
interactions, i.e. kβ = kγ . The corresponding four elastic constants for a 4D random lattice are calculated as

C1 =
2

L3∆

 l2

l1

 2π

0

 π

0


l2

+
l4

l2 + ∆2 kβ


(sin θ)5 cos ϕ4 N (l)

2π
dθdφdl (33)

C2 =
2

L3∆

 l2

l1

 2π

0

 π

0


l2

+
l4

l2 + ∆2 kβ


(sin θ)5 (cos ϕ)2 (sin ϕ)2 N (l)

2π
dθdφdl (34)

C3 =
2

L3∆

 l2

l1

 2π

0

 π

0


1

L N
∆2kα +

1

l2 + ∆2 kβ


N (l)

2π
sin (θ) dθdφdl (35)

C4 =
2

L3∆

 l2

l1

 2π

0

 π

0

l2

l2 + ∆2 (sin θ)3 (sin ϕ)2 kβ

N (l)

2π
dθdφdl (36)

where L is the length of a sufficiently large cube with a large number of particles, θ and φ refer to the spherical
coordinates of the springs in the 3D spatial space being transformed from a Cartesian coordinate system to a spherical
system, l refers to the spring’s length and the number of springs assumed to be uniformly distributed from l1 to l2, L N
is the lattice number, which is defined as the mean number of springs linked to per mass particle, and N (l) is the
density of springs with length l. The corresponding Poisson’s ratios for a random lattice were obtained using the
above equations. We found that the 4D random lattice model produces isotropic elastic responses directly.

Fig. 3 shows the results of the Poisson’s ratios calculated from the hyperelasticity analysis and the numerical
simulation. In the hyperelasticity analysis, a Poisson’s ratio larger than 0.25 is produced with negative 4D stiffness
ratios. However, the corresponding lattice spring model with negative 4D stiffness ratio may be physically unstable,
which is why the 4D Lattice (I-m) cannot be applied when the Poisson’s ratio is greater than 0.25. For the 4D random
lattice model, lattice models with different lattice numbers (L N ) are generated by setting different threshold values
for spring generation between particles. Two random lattice models with L N = 8.4 and 13.2 were generated; the
numerical simulation results for recovering the Poisson’s ratio are shown in Fig. 3. The Poisson’s ratio of a 4D
random lattice with low L N differs from that obtained via hyperelasticity analysis, and the reproduced Poisson’s ratio
is greater than 0.25. The reason for this different Poisson’s ratio is that the homogeneous deformation assumption in
the hyperelasticity analysis is no longer applicable for the random lattice model with low L N .

Although a spring with negative stiffness, e.g., a gravitation-like interaction, is intrinsically unstable, when placed
into a stiff system such as the 4D Lattice (IV) model, such a spring can become physically stable. Numerical
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Fig. 3. Poisson’s ratios predicted by hyperelasticity analysis and by numerical simulation using the 4D lattice spring model.

0.00 0.10 0.20 0.30 0.40 0.50

Fig. 4. Poisson’s ratios of cubic lattice models calculated from hyperelasticity analysis (kα ∈ [−4, 5] , kβ ∈ [−4, 5], and kγ ∈ [−4, 5]);
experimental data for cubic crystals [18] are also shown.

simulation is the direct method for determining whether a model is stable. For this reason, a numerical-simulation-
based procedure is recommended to identify the corresponding model parameters for the 4D lattice spring model
rather than using hyperelasticity theory.

In the case of cubic crystals, three elastic constants are identical to the elastic constants of the hyper-membrane
mapped in 3D space. The experimental data for 92 cubic crystals [18] were processed using Eqs. (21) and (22) to
calculate the corresponding Poisson’s ratios; the results are shown in Fig. 4.

The display range was fixed to [0, 0.5] for the x-axis and to [-0.5, 0.5] for the y-axis to filter out abnormal values;
this range covers 97.8% of the experimental data points. The results of the corresponding hyperelasticity analysis and
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Fig. 5. Boundary value problem with complex geometry domain solved by the 4D lattice spring model and FEM: (a) computational model and
boundary conditions; (b) displacement in the y-direction in Line 1–1 predicted by the FEM and the 4D lattice models; and (c) contour map of
displacement in the y-direction, as obtained by the FEM and the 4D Lattice (IV) and 4D Lattice (I-m) models.

4D Lattice models are also shown together. The Poisson’s ratios obtained for the 4D cubic lattices from hyperelasticity
analysis cover nearly the entire experimental data set. However, the admissible range of stiffness parameters in the
fourth dimension is limited by the physical stability of the corresponding lattice configurations, as shown the data
specified by the 4D Lattice (I), Lattice (II), Lattice (III), Lattice (IV) and Lattice (I-m) models. Fig. 4 indicates that
the 4D lattice spring model might be also applicable for cubic elastic materials. Nevertheless, considering the cubic
and random lattice configurations, the admissible Poisson’s range of the 4D lattice spring model covers a large range
of engineering materials such as concrete and rock [19]. Future work on the 4D lattice spring model should focus
on the development of more variable 4D lattice configurations and their corresponding influence on the mechanical
responses, the development of a constitutive model that accounts for a material’s nonlinearity, investigation of the
influence of microstructure on the mechanical responses of materials, and experimental verification and development
of high-performance computing.

3. Numerical examples

3.1. Elastic problems

To verify the 4D lattice spring model, we solved a boundary value problem with a complex geometry domain
using different 4D lattices (see Fig. 5(a)). For all simulations, the elastic modulus and Poisson’s ratio were set to 10
GPa and 0.1, respectively. Mechanical damping was used to obtain the corresponding elastic displacement solution.
Five 4D lattice models were used to solve the same problem, and the results were compared with the corresponding
FEM results. The 4D Lattice (I-m) model gave reasonable results compared with the FEM solution. Contour maps
of displacements in the y-direction predicted by the FEM and by the 4D Lattice (IV) and 4D Lattice (I-m) models
are shown in Fig. 5(b). It can be seen that the Lattice (I-m) model closely reproduces the displacement field of the
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Fig. 6. Elastic problems solved by the 4D lattice spring model: (a) computational model of a table’s deformation problem; (b) FEM and the 4D
lattice spring model solutions with different Poisson’s ratios; (c) computation of the nonlinear beam bending problem; and (d) nonlinear beam
bending problem solved by linear FEM, nonlinear FEM and the 4D lattice spring model.

(a) Computational model. (b) Blast loading.

Fig. 7. Dynamic fracturing of a hollow sphere under blast loading: (a) computational model and boundary condition and (b) blasting represented
as a triangle pressure loading.

FEM. This result indicates that the 4D lattice spring model can solve the boundary value problem of linear isotropic
elasticity (the reason is provided in Section 2.4).

To demonstrate the capability of the 4D lattice spring model to recover different Poisson’s ratios, tables with
different Poisson’s ratios under pressure were simulated (Fig. 6(a)). A comparison of the results of the displacement
in the x-direction of line 2–2 along the table’s surface predicted by the FEM with different Poisson’s ratios with those
predicted by the 4D Lattice (I-m) model is plotted in Fig. 6(b). The variation of the Poisson’s ratio is captured by the
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Fig. 8. Dynamic fracturing process of a hollow sphere under blasting loading with different Poisson’s ratios and spring strengths (blue represents to
the original solid, red indicates failure with particle opening, and green represents failure with particle closure), (a) v = 0.05, u∗

n = 3.5×10−3 mm,
(b) v = 0.05, u∗

n = 3.0 × 10−3 mm, (c) v = 0.23, u∗
n = 3.5 × 10−3 mm, and (d) v = 0.23, u∗

n = 3.0 × 10−3 mm. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

4D lattice spring model. We next considered a beam bending problem with large loading (Fig. 6(c)). Actual mechanical
problems might involve both geometric and material nonlinearity. In the 4D lattice spring model, the geometric
nonlinearity can be automatically considered since it adopts pure central force interaction which only depends on
the current configuration of the computational model. As an example, in the following, a geometric nonlinear problem
is solved by using the 4D lattice spring model. In Fig. 6(d), the corresponding displacement solution obtained by linear
FEM, nonlinear FEM and the 4D lattice spring model are shown together. The results demonstrate that the 4D lattice
spring model can capture the geometry nonlinearity automatically. Although we cannot experimentally prove that our
world is 4D, the introducing extra dimension into a lattice spring model can lead to a more concise numerical model,
which is still interesting. To consider the 4D interaction, one additional degree of freedom was introduced to each
particle, which might increase the computational time slightly. To tackle this problem, the Open Multi-Processing
(OpenMP) was adopted to parallelize the computer code of the 4D lattice spring model.
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Fig. 9. Dynamic motion of a soft robot: (a) computational model and (b) input pulse for the engine material.

3.2. Dynamic fracturing of a hollow sphere under blasting

Fracture patterns of solids are of great interest in geosciences and engineering [20]. In the lattice spring model,
the complex fracturing process can be represented as a series of spring-level failure events and is a promising,
easily understood mechanical tool for investigating the mechanism of complex fracture. In this example, a simple
brittle failure law is applied to base springs; that is, when the deformation between two particles is greater than the
given threshold value, the spring will be broken and the corresponding non-self-mapped 4D interactions (β- and γ -
interactions) will be removed from the calculation in the meantime. An example of dynamic fracturing of a hollow
sphere under blasting is presented. The computational model is shown in Fig. 7(a) and consists of 490,432 particles
with a diameter of 1 mm. The outer radius of the model is 50 mm, and the radius of the hollow spherical chamber is
20 mm. A blast loading shown in Fig. 7(b) is applied to the internal surface of the hollow sphere.

Numerical simulations with different strength parameters and Poisson’s ratios were conducted; the corresponding
results are shown in Fig. 8. Failure patterns with a sense of art were generated with a regular lattice using a regular
failure criterion. During the simulation, the symmetry of the solution is ensured from the pure central interaction. The
results lead to the conclusion that both the fracture energy (strength of spring) and the Poisson’s ratio may strongly
influence the surface fracture patterns of the sphere.

It should be mentioned that fragmentation of solids can also be well handled by using the Discontinuous
Deformation Analysis (DDA) or the FEM with a cohesive joint model [21]. However, the 3D implementations
of these models are complex and troublesome. Moreover, the 4D lattice spring model uses only one third of the
degree of freedoms compared with its DDA and FEM counterparts (12 per numerical element), and might be more
computationally efficient.

3.3. Dynamic motion of a soft robot

Development of a control technique that accounts for the material properties is regarded as one of the future re-
search directions for soft robots [3]. This problem is a complex solid mechanics problem involving high nonlinear
dynamic responses. In solid mechanics, the calculation of a rigid-body rotation tensor without dynamic inconsistency
has been a recent research topic [22]. The 4D lattice spring model might be a promising candidate for such problems
because it is free of polar decomposing calculations. For example, the polar decomposition is needed in the DLSM [23]
to calculate the spring bond’s shear deformation under a large deformation. Due to only the central force springs are
used in the 4D lattice spring model, such operation can be avoided. As shown in Fig. 9(a), the robot consists of a
combination of components: the wings, the joint and the engine simulated from a dynamic pulse input (see Fig. 9(b)).

The pulse is applied to the original spring linked mass particles of the engine according to a given prescribed
function. The soft robot’s length and width are 20 cm and 10 cm, respectively. During the simulation, the 4D
lattice spring model did not use any artificial damping to stabilize the calculation. The simulation results presented
in Fig. 10(a)–(c) show that dynamic deformation with large rigid rotation mixed with body deformation can be
reasonably reproduced.
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Fig. 10. Dynamic deforming of the soft robot predicted by the 4D lattice spring model (contour map of displacement in the y-direction): (a)
t = 1 µs, (b) t = 40 µs, and (c) t = 90 µs.

4. Conclusions

We designed a 4D lattice spring model to overcome the Poisson’s limitation of the classical lattice spring model
by using the 4D interaction. The model has advantages in naturally modelling nonlinear dynamic responses of
solids. Because the model adopts only the central interaction, it is free of special treatment of rigid body rotation
and tensorial operations involved in the nonlinear analysis in the traditional top-to-bottom-based numerical methods
such as FEM and NEM or incremental integration of the noncentral/nonlocal interaction in the bottom-to-top-based
numerical methods such as DEM and modified lattice spring models. This work also demonstrates the possible
benefits of introducing the extra-dimension concept from modern physics into solid mechanics. However, as a newly
developed model, the 4D lattice spring model is still not perfect and needs further improvements. For example, specific
constitutive models for plasticity and viscosity need to be developed for the 4D lattice spring model to solve actual
engineering problems involving material nonlinearities such as slope failures and rock avalanches.
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