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Abstract

A micro-macro and continuum-discontinuum coupled model and corresponding computer
codes are developed in thisthesis for rock dynamics study.

Firstly, a new micromechanical model for describing the elastic continuum based on
the underlying microstructure of material is proposed. The model provides a more
genera description of material than linear elasticity.

Then, a numerical model Distinct Lattice Spring Model (DLSM) is developed based
on the RMIB theory. The new proposed model has the advantages of being meshless, and
automatic continuum description through underlying discontinuum structure and directly
using macroscopic el astic parameters.

Following this, the multi-scale DLSM (m-DLSM) is proposed to combine DLSM and
NMM. The proposed model uses a tri-layer structure and the macro model can be
automatically released into micro model during calculation.

Forth ward, the ability of DLSM on modeling dynamic failure is studied. A damage
based micro constitutive law is developed. Relationships between the micro constitutive
parameters and the macro mechanical parameters of material are provided. The micro
parameters can directly be obtained from macro experimental results, i.e., tensile strength
and fracture energy, through these equations.

Moreover, the ability of DLSM on modeling wave propagation is enhanced and
verified. Non-reflection boundary condition and methods to represent discontinuity in
DLSM are devel oped.

Finally, the parallelization of DLSM and 2D implicit DLSM are introduced. The main
achievements of the whole PhD work and future research works are summarized and
prospected in the conclusion part of the thesis.

Keywords. rock dynamics, numerical model; microstructure; RMIB; DLSM; m-DLSM;
NMM; multi-scale; dynamic failure; wave propagation; Open MP; MPI; paralelization;
implicit; MLS.
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| ntroduction

1.1 Rock dynamicsand numerical modeling

Rock dynamicsis the science of studying mechanical behavior of rock under dynamic
loading. Rock in genera is a term representing rock material and rock mass, so the
research object in rock dynamics includes both rock material and rock mass. Unlike
any other man-made material, rock usually has undergone a geologica history
involving appreciable mechanical, therma and chemical actions over millions of
years. Both rock material and rock mass have complex structures as shown in Figure
1.1, which make the mechanical properties of rock much more complex than those of
other man-made materials. The structural complexity of rock plays an important role
in determine the mechanical property of rock material and rock mass. There are two
issues in rock dynamics. The first one is the failure of rock, which is one of the most
important research issues. Becauseit is related to the economy and safety of structures
built in/on rocks and is also the key element in the solution of many engineering
problems involving dynamic loading conditions. Wave propagation across rock mass
is another study issue of rock dynamics, and it is important to be able to predict wave
attenuation across fractured rock masses.

The failure of rock generaly refersto arock suffers permanent damage which affects
its ability to sustain a load. For rock dynamics, the fracture pattern and mechanical
properties are influenced by strain rate. This strain rate dependency is the most
concerned topic in rock dynamics. Results of a series of dynamic triaxial compression
tests on granite samples showed that the dynamic compressive strength increases with
the stain rate [1-3]. The rate dependent behavior may be influenced by many factors
including rock type, porosity, and water content and confining pressure. Mechanism
governing the rate-dependent behavior of rock materials was explained by different
kinds of models, such as heat activation theory [4], spring-dashpot models [5, 6],
sliding crack model [7] and inertial effect [8, 9]. However, the real mechanism of the
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dynamic effect is still not clear now. Recently, the microstructure of rock material is
considered as one of the influence factors of the dynamic effect. However, when
microscopic scale is concerned, both analytical method and experimental method are
limited. The analytical solution is not suitable to solve problems of complex geometry
and existing experimental facilities, e.g., the microscopic scale scanning electron
microscope (SEM) and X-ray CT, are not sensitive enough to detect the dynamic
fracturing process of rock material under high loading rates. Fortunately, with the
rapid advancement of computing technology, numerical methods provide the
aternative tool for studying the mechanisms of dynamic effect on rock materias.

S oy e
B Y vl : i
(8) Microstructure of sandstone, field view of (b) Joint pattern of rock mass, field of view
3.5mm[10] . around 10m [11]

Figure 1.1. The complex structure of rock at micro/macro scale.

Wave transmission is another research issue in rock dynamics. The wave transmission
can be viewed as the transmission of dynamic loads through rocks. It is an important
research issue for engineering purpose, as the damage criteria of rock structures are
generaly regulated according to threshold values of wave amplitudes, such as peak
displacement, peak particle velocity and peak acceleration [12, 13]. The prediction of
wave attenuation across fractured rock masses is very important in solving problems
in geophysics, seismic investigation, rock dynamics, rock protective engineering, and
earthquake engineering. Many researchers use wave scattering theories and
displacement discontinuity theories to study the wave propagation through rock joints
(e.g. [14, 19]). Interface wave propagation through a single fracture and one set of
fractures has been examined by many researchers (e.g. [16-18]). In those studies, the
wave attenuation is the most concerned study context. In practice, there commonly
exist severa sets of fractures in fractured rock masses. The intersecting fractures
produce intersecting reflection interfaces. Wave attenuation across intersecting



fractures will be more complicated than that across a set of fractures, where the
reflection interfaces are parallel. Analytical method is very difficult to be applied for
the complex geometry condition. Again, numerical methods are promising solutions
for wave propagation problems in rock dynamics.

There exist a large number of numerical methods which have been applied to rock
mechanics and rock engineering. In order to solve rock dynamics problems, the
numerical model is required to satisfy the following requirements:

» Used parameters can be obtained directly from the exiting standard
experiments.

» Failure of material and energy transmission can be explicitly modeled.

» The macroscopic continuum behavior before failure can be precisely model ed.

» The microscopic discontinuum response after failure can be modeled.

=  Complex geometry model at microscopic scale can be easily represented.

Unfortunately, so far, there does not exist a single numerical method which could
satisfy al of them. A micro-macro and continuum-discontinuum coupled numerical
method should be developed to satisfy these requirements. The methodology is shown
in Figure 1.2, where the macro continuum is made up of micro discontinuum parts
before faillure and the macro continuum can be further broken into micro
discontinuum parts after failure. The goal of this PhD thesisis to develop a numerical
model based on this methodology and then use it to study rock dynamics problems
related to rock failure and wave propagation.

Build up

macro
continuum

micro
discontinuum

Break down

S
b, . N

Figure 1.2. Micro-macro and continuum discontinuum methodol ogy.



1.2 Objectives and scope of thethesis

The main objectives of thisresearch are:

To develop a micro-macro and continuum-discontinuum coupled model and
computer codes.

To validate the codes for numerical modeling study on wave propagation
through rock material and rock mass, rock fracturing process and dynamic
effect of rock material.

In order to achieve the objectives, the following works have been performed:

Reviewing the existing numerica methods to find their advantages and
disadvantages and conceptualizing the new numerical model.

Developing a microstructure based theoretical model for macroscopic
continuum.

Developing a microstructure based numerical model and its computer code.
Developing a multiscale model based on the proposed model and its
computer code.

Verifying the codes against analytical solutions and experimenta results.
Modeling the loading rate effect of rock material to validate the new model on
dynamic fracturing simulation.

Modeling wave propagation through rock material and rock mass to test the
applicability of the developed code for wave propagation study.

Applying high performance computing for the model and develop paradlel
codes.

Investigating the explicit model and develop the implicit version of the model.

1.3 Structure of thethes's

This thesis is divided into 10 chapters. In Chapter 1, an general introduction of the
thesis is given, including a discussion of rock dynamics and its requirements on the
numerical modeling, and objectives and scope of the research.

Chapter 2 focuses on the literature review on different numerica methods. The
literature review is not only focusing on the numerica methods used in rock
mechanics but also concerning other methods used in areas such as nanostructure



technology and metals. These numerical methods are reviewed in three groups:
continuum based methods, discontinuum based methods and coupled methods.
Following the literature review, the chalenges and problems existing in the current
numerical methods are listed and the possible solutions are discussed.

Chapter 3 presents a new micromechanica model, real multi-dimensiona internal
bond model (RMIB), for modeling elastic continuum. The continuum is assumed to
have an underlying micro-structure consisting of discrete particles connected by
multi-dimensional internal bonds (normal and shear springs), which has been
demonstrated as a useful description for fracture modeling of materials such as rock
and concrete. The proposed model provides a microscopic description of the rock
material at macroscopic scale and also serves as the theoretical foundation for the new
developed numerical model in Chapter 4.

Chapter 4 introduces a 3D distinct lattice spring model (DLSM). The model
discretize the macroscopic continuum into microscopic discontinuum parts and is the
computationa realization of the RMIB theory in Chapter 3. It is a kind of lattice
spring model, which is different from the conventional lattice spring models. It can
represent the diversity of the Poisson’s ratio without violating the rotational
invariance. The material parameters inputted in the model is the conventional material
parameters, e.g., the elastic modules and the Poisson’s ratio. Relationships between
microscopic spring parameters and macroscopic material constants are derived based
on the RMIB theory. The new proposed model has the advantages of being meshless,
and automatic continuum description through underlying discontinuum structure and
directly using macroscopic elastic parameters. Numerical examples are presented to
show the abilities and properties of DLSM in modeling elastic and dynamic failure
problems.

Chapter 5 presents a multiscale numerical method (m-DLSM) which combines
numerical manifold method (NMM) and DLSM. The proposed model use a tri-layer
structure to couple the macroscopic NMM with the microscopic DLSM model. A new
particle based manifold method (PMM) is proposed to bridge the two different
methods. The coupled method is validated by several examples including one
example of blasting wave propagation through atunnel.



Chapter 6 focuses on the ability of DLSM to study dynamic failure of rock material.
As a new developed numerical model, constitutive model used in DLSM is different
from those used in the existing numerical methods. A general form of the micro
congtitutive law is proposed. Moreover, relationships between the micro constitutive
parameters and the macro mechanical parameters of material are provided. By using
these equations, micro parameters used in DLSM can directly be obtained from macro
experimental results, i.e., tensile strength and fracture energy. Two examples are
modeled by DLSM to show the ability of the new developed code on modeling
dynamic failure problems.

Chapter 7 presents the applications of DLSM on the study of stress wave propagation
through rock material and rock mass. Non-reflection boundary condition is
implemented and tested. The influence of particle size on P-wave and S-wave
propagation through rock are investigated through 1D and 2D wave propagation
problems. Two methods are introduced in DLSM to represent discontinuity. Wave
propagation through single joint is predicted by DLSM and compared with analytical
solutions.

Chapter 8 describes the computational aspects of DLSM. The motivation of the
study is to reduce computational time by parallel computing and solve scientific
problems which are too big to handle by the serial DLSM code. This chapter is
organized into two main sections. The first section presents the parallel
implementation based on the OpenMP (Open Multi-Processing) programming
interface. The second section describes the parallel implementation based on Message
Passing Interface (MPI) for supercomputer.

Chapter 9 introduces the 2D implicit DLSM. The globa stiffness matrix is
assembled and static solution can be obtained by solving linear algebraic equations.
The modeling results are compared with FEM results. It shows that the DLSM model
is numericaly stable, which is an important feature. Moreover, it is easy to treat
heterogeneity and does not require integration. These features make the method
advantageous than some existing meshless methods.



In the final chapter, Chapter 10, the main achievements of the whole PhD work are
summarized. Future research works are also prospected.
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Review of present state of numerical methods

With the improvement of modern computers on computing power, numerical methods
have become extremely useful in scientific research. It has been proven that, in
addition to experimental method, computer simulation using numerical methods is a
powerful and effective tool for the study of rock mechanics. For example, numerical
modeling has been used to study dynamic response of fractured rock masses [1, 2],
fracturing propagation in rock and concrete [3-9], wave propagation in jointed rock
masses [10, 11], and acoustic emission in rock [12]. There exist a large number of
numerical methods, e.g., Finite Element Method (FEM), Finite Difference Method
(FDM), Finite Volume Method (FVM) and Discrete Element Method (DEM).
Generdly numerical methods used in rock mechanics can be classified into
continuum based method, discontinuum based method and coupled
continuum/discontinuum method [13]. Based on this classification, this chapter will
review the existing methods with more focuses on new developed methods and those
not covered by [13], eg., Smoothed Particle Hydrodynamics (SPH), Molecular
Dynamics (MD) and combined FEM/DEM method. This chapter attempts to obtain a
global view for each class of methods and find the advantages and disadvantages of
each. Finally, some ideas of how to design the suitable numerica method for rock
dynamics are proposed.



2.1 Continuum based methods
2.1.1 Finite Difference Method (FDM)

FDM is one of the oldest numerical techniques used for the solution of sets of PDES.
The implementation of FDM is simple in both three dimensiona and two dimensional
cases. It does not need trial (or interpolation) functions like any other methods.
However, the conventional FDM with regular grid system does suffer the inflexibility
in dealing with fractures, complex boundary conditions and material heterogeneity.
This shortcoming constrains its application in rock mechanics. Development of FDM
targets at getting rid of the shortcoming. For example, the Finite Volume Method
(FVM) is considered as an extended FDM which not only removes the regular mesh
constrain but also specialy fits to the simulation of non-linear behavior of solid
materials [14]. Finite-difference time-domain (FDTD) method [15] is a direct
development of FDM. It adopts a two layer grid-based differential time-domain
methodology. FDTD was widely used for processing electromagnetic data in rock
mechanics, e.g., the imaging of electromagnetic data for cross-borehole [16-18].
FDTD was also used for determining the hydraulic conductivity of rocks [19] and
solving wave propagation problems in homogeneous and heterogeneous medium [20-
25]. Inhomogeneous problems are solved by FDTD using the double grid
methodology.

Based on the basic idea of FDM, some truly meshless methods are proposed recently,
such as the generalized finite difference method (GFDM) [26] and the finite point
method (FPM) [27]. Indeed, the basic idea of FDM has been widely used to discretize
time domain in many numerical methods, especialy for dynamic analysis, e.g., DEM
and MD.

2.1.2 Boundary Element Method (BEM)

Boundary element method (BEM) seeks a weak solution at the global level through a
numerical solution of an integral equation derived from the original PDE using Betti’s
reciprocal theorem and Somigliana's identity. As only the boundary surface of
modeling domain is needed, BEM reduces the problem dimension by one. This leads
to a fast computing speed and easy mesh generation. BEM is more suitable for



solving problems of homogeneous and linearly elastic bodies [28-30]. Recent
development of BEM includes the Boundary Contour Method (BCM) [31] and the
Fast Multipole BEM (FMBEM) [32] with further reduction of computational time, the
Galerkin BEM (GBEM) [33, 34] which paves the way for the variation formulation of
BEM for solving non-linear problems, and meshfree BEM [35, 36] which overcomes
the drawbacks related to the use of boundary element in the conventional BEM. In
genera, BEM is not as efficient as FEM in dealing with material heterogeneity, non-
linear material behavior and damage evolution process.

2.1.3 Finite Element Method (FEM)

The FEM [37] term was first used by Clough for plane stress problems, now it has
become the mainstream numerical tool in engineering sciences, including rock
mechanics. FEM has great robustness and flexibility in the treatment of material
heterogeneity, non-linear deformability, complex boundary conditions, in situ stresses
and gravity. These merits make the FEM becoming the most successful numerical
method used in engineering and science research [14]. Special development of FEM
for problems in rock mechanics is the idea of joint elements [38-41] which was
introduced for the simulation of jointed rock mass. In rock mechanics, the most
difficult thing faced by FEM is the ssmulation of fracturing process. This subsection
will focus on this aspect. A survey of the literatures on FEM modeling of fracturing
progress found that the available methods can be classified into two groups: the
element degradation approach and the element boundary breaking approach.

The idea of the element degradation approach is to treat the fracturing process as a
sequence of element degradation. The deletion technique provided in ABAQUS [42]
is an example of this kind of approach, which removes the elements where the failure
criterion is locally reached. Elements deleted can be visualized to mimic the crack
progress. The most representative method in this group is the continuum damage
mechanics (CDM) based FEM, which was widely used for brittle fracturing analysis
[43-45]. When combined with the Weibull distribution for representing heterogeneity
and some statistical failure criteria, it was applied to describe damage evolution and
crack propagation in rock and concrete under static and dynamic loading conditions
[3-9]. Based on the equivalent continuum concept, another degradation technique was
realized by modeling cracks and joints as elastic degradation and/or softening
plasticity [46]. Crack smeared model is one representative of this method, which was
first introduced by Rashid [47]. The crack smeared model is commonly used in
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concrete fracture analysis, and it is being far more popular because of its
computational convenience [48]. Applications of the crack smeared model include, to
just name a few, fracturing analysis of concrete under high strain rates [49],
simulation of the thermo-mechanica behavior and failure of ceramic refractory
materials [50], and damage analysis of reinforced concrete structures [51]. This
technique has also been used in commercial FEM codes, e.g., ANSYS [52] and
ATENA [53], to simulate the fracture/crack process of concrete-like materials.
Element degradation method has the advantages of no requirement of re-meshing and
not adding new degrees of freedom in the calculation process. However, this method
cannot give explicit description of the fracture surface and has mesh size and
orientation dependency.

The element boundary breaking approach represents the fracturing process by the
separation of inter-element boundaries. The method inserts interface elements along
the inter-element boundaries. It was used for crack propagation in concrete and rock
materials [54-56]. Failure of an inter-element boundary can be based on the fracture
mechanics or failure criteria of the corresponding interface element. Fracture
mechanics based methods are used in severad FEM codes such as ABQUS [42],
FRANC [57] and MARC [58] to deal with crack propagation problems. The most
successful development of the element boundary breaking approach is the Cohesive
Zone Model (CZM) which dates back to the work of Hillerborg et a. [59] and
Belytschko et al. [60] for brittle materials. The CZM has been successfully used in
simulation of fracture and fragmentation in brittle materials, multiple discrete crack
propagation and dynamic crack growth in ceramic materias [61-65]. Normally, this
technique should be coupled with re-meshing techniques to eliminate the element
dependence and the problem of stress singularity which exists in the crack tip [63].
However, re-meshing techniques [66-69] requires a rather complex software package
to be developed and the use of re-meshing techniques also accumulates the calcul ation
errors through mapping of variables. The worse fact is that adaptive re-meshing can
hardly be used to simulate complex crack development, such as crack coalescence and
crack bifurcation.

There aso exist some shortcomings in FEM, e.g., the continuum assumption in FEM
makes it unsuitable to deal with complete detachment and large-scale fracture opening
problems [13, 14], which are the most concerned issues in rock mechanics. Locking
effects which include numerical locking and element locking during simulation are
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other pitfalls of the traditional FEM [70-74]. Some of these shortcomings have been
solved by the derived FEMs to be reviewed in the following subsection.

2.1.4 Derived FEM

After the Partition of Unity (PU) [75] was proposed by Babuska and Melenk,
researchers of different numerical methods can find their theoretical base through it.
Based on PU, a priori knowledge about the solution can be added into the
approximation space of the numerical solution. Numerical methods based on PU are
usually called as derived FEMs. The typical derived FEMs are Numerical Manifold
Method (NMM) [76], eXtend FEM (XFEM) [77], Generdized FEM (GFEM) [78]
and Finite Cover Method (FCM) [79, 80]. Thereview in this subsection will focus on
these methods.

NMM was developed to integrate Discontinuous Deformation Analysis (DDA) and
FEM. NMM employs two sets of cover system [76]. One is mathematical cover which
is used to build approximation and independent of the problem domain. Another is
physical cover which contains the geometry information of the problem domain and is
used to define the integration fields. The advantages of NMM are releasing the task of
meshing and combining continuum and discontinuum problems into one framework.
For this reason, NMM is suitable for fracture progress simulation [81, 82]. NMM has
severa advantages over classical FEM, e.g., it is more suitable for modeling dynamic
crack growth problem [81] and micropolar elasticity [82]. FCM [78] is an extension
of NMM to modeling of heterogeneous materials by using Lagrange multipliers.
Recently, FCM has been extended to three-dimension by Terada and Kurumatani [83].
The NMM is proposed much earlier than the PU theory and other derived FEMSs.
Recently, it is also called as cover-based generalized FEM [80]. Actualy, the solver
in manifold code is very similar with that in standard FEM and the distinct parts in
NMM are the mesh generation technique and the half element technique. NMM can
be regarded as a specia derived FEM designed for rock mechanical problems which
contain large numbers of discontinuities.

The XFEM [77] and GFEM [78] are other well known derived FEMs. GFEM and
XFEM use exactly the same technique, but GFEM targets at solving problems in
complex geometry with less error and less computer resources [84, 85], while XFEM
focuses on crack propagation problems. For this reason, only XFEM is addressed here.

12



XFEM treats cracks at element level by using the level sets technique [86]. Usualy,
Heaviside function and asymptotic functions are used to dea with the discontinuity
and singularity. Compared with the classical FEM, XFEM has several advantages in
aspect of mesh independence. In XFEM, elements containing a crack are not required
to conform to crack edges, and mesh generation is much simpler than in classica
FEM. The most important aspect of XFEM is that it can perform extending crack
without any re-meshing and the singularity can well be captured. Because of these
advantages, XFEM was successfully used in the simulation of crack propagation [87],
dynamic crack propagation [88] and three-dimensiona crack propagation [89, 90].
Recent development of XFEM includes dealing with cohesive fracturing [91], explicit
formulation of XFEM [92, 93], anisotropic XFEM [94] and considering contact
between crack surfaces[95, 96].

These derived FEMs have the advantage of mesh independence and being able to dedl
with weak or strong discontinuities efficiently. These merits make them very suitable
for fracturing process analysis. Nevertheless, they also have their own disadvantages.
For example, in some cases the implementation of boundary conditions is as difficult
as that in meshless methods [97]. The global stiffness matrix will become singular if
the crack passes a very tiny part of XFEM element [98], which is an existing problem
for al derived FEMs including NMM and GFEM. Implementation of XFEM into
available commercial FEM code is difficult [99] because additional degrees of
freedom are introduced. Moreover, al of these methods would suffer ill-conditioned
problems when higher order cover functions (trial functions) are used. There are
methods to reduce the singularity, but with the price of sacrificing the description of
discontinuity inside enriched elements. In spite of these drawbacks, these derived
FEMs are still the most promising methods. Thisis mainly attributed to the successful
succession of the standard FEM idea and its inherent merits, e.g., robust and easy to
deal with complex geometry, various loading and material conditions.

2.1.5 M eshless methods

In recent years, a large family of meshless methods with the aim of getting rid of
mesh constraints has been developed. Their requirements for model generation are
only generation and distribution of discrete nodes without fixed element-node
topological relations as in FEM. Compared to mesh generation, it is relatively simple
to establish a point distribution and adapt it locally. A local approximation function
for the PDEs is built based on points grouped together in ‘clouds. There are many
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meshless methods, such as Smoothed Particle Hydrodynamics (SPH) [100, 101],
Diffuse Element Method Nayroles [102], Element Free Galerkin (EFG) [103, 104],
Reproducing Kernel Particle Method (RKPM) [105, 106], Hp Clouds [107], Partion
of Unity Method (PUM) [108], Finite Point Method (FPM) [109], Method of Finite
Spheres [110], Natural Element Method (NEM) [111]. Review on these methods is
given in [13] and [112]. Depending on the methodology used to discretize the partia
differential equations (PDES), meshless methods can be classified into two major
categories. meshless strong-form methods and meshless weak-form methods. Most of
meshless weak-form methods such as EFG [103] are ‘meshless’ only in terms of the
numerical approximation of field variables and they have to use a background mesh to
do numerical integration of a weak form over the problem domain, which is
computationally expensive. Meshless strong-form methods such as GFDM [26] and
FPM [109] often use the point collocation method to satisfy governing partial
differential equations and boundary conditions. They are simple to be implemented
and computationally efficient. Since they do not need any background mesh, they are
truly meshless methods. In this subsection, only three representative meshless
methods will be concerned, they are EFG, SPH and FPM.

EFG [103] is based on moving least square interpolations (MLS) which requires only
nodal data and no element connectivity is needed. This meshless property is very
suitable to model dynamic crack propagation problems. The application and
development of the EFG method includes various fields, such as problems of fracture
and static crack growth [104], dynamic problems [113], three-dimensional material
non-linear dynamic problems [114], adaptive approach [115], dynamic propagation of
arbitrary 3-D cracks [116], mixed-mode dynamic crack propagation in concrete and
probabilistic fracture mechanics [117, 118], pardlel EFG agorithm [119] and
multiple cracks and cohesive crack growth [120]. Contact algorithm based on a
penalty method is introduced in [121]. The EFG was also used for analysis of jointed
rock masses with block-interface models [122]. The EFG method has the potential to
be used in rock mechanics. Difficulty in implementing essential boundary conditions
and additional computational cost caused by MLS are the main drawbacks of EFG.

SPH was first invented to deal with problems in astrophysics [100] and later extended
for elastic problems [123]. Application of SPH is mainly in fragmentation analysis,
such as dynamic fragmentation in brittle elastic solid [124, 125], high distortion
impact computations [126, 127], concrete fragmentation under explosive loading
[128], formation of cracks around magma chambers [129] and strain rate effect for
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heterogeneous brittle materials [130]. SPH exhibits an instability called the tensile
instability and a problem known as the zero-energy mode. Both need special
treatment in order to produce stable and accurate results [131]. Furthermore, the
kernel function of SPH has great influence on the ssimulation results [132] and its
accuracy is not as good as FEM. Overall speaking, SPH has advantage in simulation
of dynamic fragmentation and is easy to implement. But the accuracy, computational
time and contact treatment are still problematic in SPH, which hamper its further
application in rock mechanics.

FPM [109] is a kind of meshless point collocation method which uses the weighted
least squares (WLS) approximation within each point cloud. It can be easily
constructed to have consistency of a desired order. Discrete equations are directly
obtained from PDEs. It is easy to be implemented and boundary conditions can also
be implemented by directly prescribing boundary conditions on points placed on
boundaries. The most attractive point of FPM is that it can give more accurate stress
results than FEM [133]. FPM with intrinsic enrichment was proposed for solving
elastic crack problems. By the method, the local behavior of the near-tip stresses is
successfully captured and the stress intensity factors can be accurately computed
[134]. Furthermore, FPM is developed to simulate crack propagation under dynamic
loading conditions [135]. Adaptive refinement process for FPM based on posteriori
error estimator was presented [136]. However, the instability and the difficulty of
dealing with heterogeneous media have handicapped its application to rock mechanics.
Recently, the heterogeneous problem is partially solved [137], however, for arbitrary
heterogeneous problem there is no good solution yet.

The main advantage of the meshless approaches is the sharply reduced demand for
meshing compared with the standard FEM for both continuous and fractured bodies.
Shortcomings of many meshless approaches are difficulty in enforcement of essential
boundary conditions, stability problem and high computational cost. Generally
speaking, meshless methods still do not outperform FEM in computing performance.
Nevertheless, they have good potential for rock mechanics problems due to its
flexibility in trestment of fractures and complex structures.
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2.1.6 Drawbacks of continuum based methods

The continuum assumption in continuum based methods makes it not suitable for
dealing with complete detachment and large-scale fracture opening problems [13],
which are the most concerned issues in rock mechanics. It is difficult to apply
continuum based methods to solve problems which involve complex discontinuity,
such as jointed rock masses and rock in post-failure state. This is regarded as the
intrinsic limit of continuum based methods. The continuum based methods use the
idea of top-down methodology. Therefore, they cannot be used for exploring study on
fundamental issues of mechanical problems, e.g., the microscopic mechanism of
dynamic effect in rock materials.

2.2 Discontinuum based methods
2.2.1 Discrete Element Method (DEM)

DEM was invented for solving rock mechanics problems [138]. The key concept of
DEM is to divide the modeling domain into an assemblage of rigid or deformable
blocks/particles/bodies [139,140]. DEM is made for dealing with discontinuous
bodies with large displacements and rotations, e.g., the progressive failure of blocky
rock mass. DEM has undergone a long development since it was first proposed by
Cundall [139]. DEM methods have been widely used in underground works [141-143],
laboratory test simulations and constitutive model development [144-146], rock
dynamics [147, 148], wave propagation in jointed rock masses [11], nuclear waste
repository design and performance assessment [149], rock fragmentation process
[150], and acoustic emission in rock [12].

According to the solution method used, DEM methods can be divided into two groups.
explicit ones and implicit ones. For the explicit DEM methods, there exist two kinds
of approaches. the dynamic relaxation method and the static relaxation method. The
latter uses equations of equilibrium to obtain the displacement of blocks at the next
time step. Examples of static relaxation based DEMs can be found in [140, 151]. The
static relaxation method iterates faster and does not need damping. However, it cannot
be used for dynamic problems. Dynamic relaxation based DEM use Newton’s second
law to get the displacement of blocks at the next time step, and it is called as the
distinct element method. The distinct element method can simulate the complex
mechanical interactions of a discontinuous system. The most representative explicit
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DEM codes are UDEC and 3DEC for two-dimensional and three-dimensional
problems in rock mechanics [152,153] respectively. Making use of particles to
simulate granular materials is another development direction of DEM [14, 154]. The
most representative codes in this field are the Particle Flow Code (PFC) [155] and the
Distinct Motion Code (DMC) [156]. Bonded Particle Model (BPM) [157, 158] was
implemented in the particle DEM codes, which can describe the damage mechanism
and time-dependent behavior of rock material at microscope. It has been used not only
to ssmulate rock materials but also in shear-band simulation of metal material [159].

Contact detection and contact interaction are the most important issues in DEM, and
many researchers think that DEM is distinct from other methods on the ability of
detection new contacts during the calculation procedure. There are many contact
detection agorithms which target at saving computing time and memory space, and
detail information can be found in the book by Munjiza[160]. Mechanical interaction
between two contacting blocks has a great influence on the final mechanical behaviors
of DEM models. Usualy it is modeled by a finite stiffness spring in the normal
direction and a finite stiffness spring in the shear direction. Improvements of
interaction modeling were reported, e.g., an interaction range and a modified Mohr
Coulomb rupture criterion were introduced in DEM [161, 162] and a first order
differential equation for joint cohesion was implemented into the UDEC code [163].

DDA [164] isatype of DEM originally proposed to analyze the mechanical behavior
of blocky systems. It is similar to FEM, but can represent the interaction of individual
blocks in rock masses. DDA is typically based on a work-energy method, and can be
derived using the principle of minimum potential energy or the Hamilton's principle.
The applications of DDA are mainly on landslides, tunneling, fracturing and
fragmentation processes of geological and structural materials, and earthquake effects
[165-167]. Developments of DDA include meshing the blocks with FEM meshes
[168], dedling the contact as joint with stiffness and removing none penetration
criterion to reduce the computation time and get fast convergence [169], coupled
stress-flow problems [170], three-dimensiona block system analysis [171], higher
order elements [172], more comprehensive representation of the fractures [173], and
viscous boundary for modeling stress wave propagation [167].
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Mainly due to the explicit representation of fractures and joints, DEMs have been
enjoying wide applications in rock mechanics and rock engineering. Furthermore, the
theory of DEM methods is simple and easy to understand. Nevertheless, no method is
perfect, there are also some shortcomings in DEM, e.g., the lack of knowledge of the
geometry data of the rock fractures limits their applications [174]. Moreover, DEM is
relatively new and many researchers regard it as “not yet proven” numerical method
for analysis and design in rock mechanics.

2.2.2 Molecular Dynamics (MD)

MD is a form of computer simulation in which atoms and molecules are the basic
elements. The system behavior is obtained through direct simulation of the motion of
elements interacting under given physical laws. It is regarded as an interface between
laboratory experiment and theory, and can be understood as a kind of "virtual
experiment”. MD was originally conceived within theoretical physics in the late
1950's [175]. Now it is widely used in material science and biochemistry science. It
can help people to explain and find some phenomena at the atomic level. This review
will only focus on the mechanical application of MD. Even in the early time, MD was
used to study the crack properties and results obtained by MD agree well with those
by continuum mechanics and fracture mechanics [176-179]. MD simulation was also
used to study brittle to ductile transition of the propagation of a sharp crack and
favorable crack propagation direction in crystalize materia [180, 181], failure
mechanism of micro granular material [182, 183], propagation of mode-1 cracksin an
icosahedral model quasi-crystal [184], and Yoffe's linear theory of dynamic brittle
fracture [185].

Rock mechanics related problems solved by MD include interaction between complex
granular particles [186], mechanical properties of poly-crystal materials [187],
viscoelastic behavior of granite rock [188], and influence of porosity on elastic
strength properties of polycrystalline specimens (sandstone) [189]. Potential function
used in MD simulation has great influence on the simulation results, and it is aso the
core context of MD study. Potentials used for crack propagation study include the
Lennard-Jones Potential [176,178], the Hooke's Law (Harmonic Potential) [185], the
EAM potentials [182, 183] and the ReaxFF reactive force field [190]. The Lennard-
Jones Potential and the Hooke's Law are simple but not very physically redistic. The
EAM potentials could be successfully used in simulation of metal. However, they are
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not suitable for non-metal material such as silicon. The problem can be solved by
using the ReaxFF reactive force field, which is computationally costly [190].

MD can be used to explain mechanical phenomena at atomic scale. It is a powerful
tool for study mechanisms of crack propagation at microscopic level. However, long
time simulations are mathematically ill-conditioned. Simple potential functions are
not sufficiently accurate to reproduce the dynamics of molecular systems, while
complex potential functions are usually computationally expensive. Furthermore, the
atomic structures of rock materials are too complicated and can hardly be obtained.
These limitations lead to the fact that MD till cannot be used for engineering
problems in rock mechanics.

2.2.3 LatticeModel (LMs)

A family of methods coined as lattice models (LMs) have been developed in the past
few decades. They are based, in principle, on the atomic lattice models originated
from condensed matter physics. In these models, material is represented by a system
of discrete units (e.g. particles) interacting via connecting elements. These discrete
units are much coarser than the true atomic ones and may represent larger volumes of
heterogeneities such as grains or clusters of grains. Compared to a true lattice model,
the use of coarse lattices in lattice models dramatically reduces the number of degrees
of freedom, and hence makes simulation of continuum systems affordable for
medium-sized computers. Lattice models are more suitable for modeling fracture of
materials than conventional FEM's because the former ones simulate fracture by either
simply removing connecting elements that exceed the strength or successively
degrading their mechanical properties according to cohesive laws. The spatial
cooperative effects of crack formation and heterogeneities can be easily investigated
through the use of LMs[191, 192].

There exist two different types of lattice models. In the first type models, the material
is discretized as a network of springs or beams whose geometry is not related to the
actua internal geometry of the material. Here the discrete units are merely lattice sites
(nodes). This type of models can be further classified into lattice spring [193-197] and
lattice beam [198-201] models according to the number of degrees of freedom per
node and the mechanical properties of connecting elements. In a lattice spring model
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(LSM), the unknowns are the nodal displacements and the connecting elements are
one-dimensional springs. In a lattice beam model, the unknowns are the nodal
displacements and rotations and the connecting elements are beams transferring
normal forces, shear forces and bending moments. The second type models are based
on the discrete element method originally developed for granular media with contact
modeling [202]. For example, the rigid body-spring network model developed by
Kawai [203] subdivides the material into rigid particles interconnected along their
boundaries through normal and shear springs. It introduces additional rotational
degrees of freedom on each particle and hence can be viewed as discretization of a
micropolar continuum. Models in this category aso include that of Zubelewicz and
BaZant [204], the confinement-shear lattice model of Cusatis et al. [205], the bonded-
particle model [206], the simple deformable polygonal discrete element model [207].

The origin of LSM may trace back to Hrennikoff [193]. The simplest LSM is the
normal force model in which only central force interactions (norma springs) are
considered. The normal force model has been extensively applied to investigate the
elastic and failure properties of a disordered medium [194-199] or the fractal
properties of crack [208]. It is also frequently used to study fracture or other issues of
material science [209]. However, for the normal force model, it is known that the
Poisson’ s ratio obtained by the model approaches, in the limit of an infinite number of
particles, a fixed value, namely, 0.25 for three-dimensional cases and 0.33 for two-
dimensional cases. Such restriction is not suitable for many materials and it can be
overcome by introducing non-central force interactions (shear springs) between
particles. There are different methods proposed to solve this problem, e.g., a method
to modify the Poisson’s ratio by introducing a harmonic potential for rotation of
bonds from their initial orientation [210]. A non-central two-body interaction limiting
the rotational freedom of bonds is introduced in the Born spring model [211, 212] to
allow abroad choice of the Poisson’s ratio. The Kirkwood-Keating spring model [213,
214] introduces angular springs to penalize the angular variations between the
contiguous bonds incident onto the same node. Nevertheless, this problem cannot be
solved ideally if only pair body interaction is considered, because in this case
rotational invariance is often violated.
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2.2.4 Drawbacks of discontinuum based methods

Discontinuum based methods treat rock material or rock mass as an assembled model
of blocks, particles or bars. The fracturing process of rock is represented by the
breakage of inter-block contacts or inter-particle bonds, which can be easly
implemented in computer simulation. Discontinuum based methods can reproduce
realistic failure process of rock. However they are not suitable for stress state analysis
of pre-failure rock. Thisisthe undesired aspect of discontinuum based methods.

2.3 Coupled Methods
2.3.1 Continuum and Discontinuum Coupled Methods

The continuum based methods are unsuitable to capture the post-failure discontinuous
stage while the discontinuum based methods are unsuitable to capture the pre-failure
stage of rock. A combination of continuum and discrete methods is required in many
rock mechanics applications, such as predicting the formation and interaction of
fragments for projectile penetration into rock [216]. Coupled continuum and
discontinuum methods can take advantages of the strength of each method while
avoiding its disadvantages. For fracturing simulation, a coupled method is required to
be able to capture both the pre-failure and the post-failure behavior after collapse
occurs [217]. Modeling the discontinuous zone with a discontinuum based method
and the continuous zone with a continuum based method is a direct coupling
methodology. Examples of this kind of coupling are hybrid DEM/BEM model [218],
combinations of DEM, DFN and BEM approaches [219], and hybrid DEM/FEM
model [220, 221]. To develop continuum-discontinuum coupled methods, most
researchers incline to couple FEM with DEM. The review in this subsection will be
limited to this approach.

Combined finite-discrete element method [160, 222] is a recently developed coupled
FEM/DEM method which aims at modeling failing, fracturing and fragmenting of
solids. In the combined finite-discrete element method, each body is represented by a
single discrete element that interacts with other discrete elements that are close to it.
In addition, each discrete element is divided into FEM elements, which can be broken
into smaller blocks during calculation. Coupled FEM/DEM has been widely used to
simulate fracture process of rock, e.g., Morris et al. [216] developed a FEM/DEM
code, LDEC, to investigate the effect of explosive and impact loading on geological
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media, Karami and Stead [223] used a coupled FEM/DEM model to simulate crack
propagation under mixed mode loading, and Ariffin et al. [224] applied a hybrid
FEM/DEM code to investigate the processes of joint surface damage and near-surface
intact rock tensile failure. Coupled FEM/DEM method is a powerful method to solve
the fracturing process problems. However, implementing this method into a computer
code needs complex skills and extensive efforts. There also exist some numerical
methods which attempt to combine continuum and discontinuum methods into one
single framework, e.g., NMM [77], the continuum-based discrete element method
(CDEM) [225], the Peridynamic model [226], and the Finite Edge Element Method
(FEEM) [227]. However, the basic ideas of these methods are similar to the
FEM/DEM coupled methodology.

2.3.2 Multiscale Coupled Methods

Multiscale modeling was regarded as an exciting and promising methodology for
simulation of fracturing process [228, 229]. Problems in rock mechanics are often
multiscale, e.g., multiscale fracturing is regarded as the key to forecasting volcanic
eruptions [230]. The purpose of multiscale modeling is reducing the computational
time [231] and directly obtaining macro material response from micro mechanical
interaction [232]. So far, there are three types of coupling methods. The first oneisto
couple models of different scales by using microscopic model only for parts of the
modeling domain where it is needed and applying macroscopic model for other parts.
This methodology is widely used in coupling MD with continuum mechanics. For
example, FEM with MD [177], analytical solution with molecular dynamics[183] and
the generalized interpolation materia point (GIMP) method with molecular dynamics
(MD) [233].

The second one is to use the same methodology, but adapted to different scales. For
example, a two scale approach based on a refined global-loca method is applied to
the failure analysis of concrete structures [234]. In this approach, the FEM solution is
split into two parts. Thefirst part isalinear elastic analysis on a coarse mesh over the
whole model. The second one is a non-linear analysis over a small part of the model.
XFEM was used for simulating micro-macro crack evolution in heterogeneous
materials in [235, 236]. It is realized by decomposing the solution into a coarse-scale
description unchanged during the crack propagation and a fine scale computation
which can be done independently of the coarse-scale computation. Examples of this
kind of coupling method also include the three-scale computational method [237, 238],
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the multi-scale boundary element method [239], and the Voronoi cell FEM with a
non-local Gurson Tvergaard Needleman (GTN) model [240].

The third one is the numerical method which includes multiscale function itself. For
example, the multiscale finite element method (MSFEM) [241] was designed for
solving a class of liptic problems. The finite difference heterogeneous multi-scale
method (FD-HMM) [242] was proposed for solving multi-scale parabolic problems.
Quasicontinuum (QC) method is a coupled continuum and atomistic method which
was initially proposed by Tadmor et al. [243] for simulating the mechanical response
of polycrystalline materials. QC is used for the study of metal materias, eg., the
effects of structure and size on the deformation of bi-crystals in copper [244], the
atomic scale fracture [245], and the deformation and failure of metal material [246].
There are also some wavelet based numerica methods, e.g., the wavelet based
reproducing kernel particle method (RKPM) [247] and the multi-resolution finite
element method based on the second generation wavelets [248, 249], which are of
multiscale nature. The shortcoming of multiscale methods is that these methods are
relatively new and no method is specialy designed for rock mechanics.

2.4 Challengesand conclusions
Challenges exist in computational science include [250]:

(1) Explicitly and accurately model dynamic crack propagation problem.

(2) Multi-scale analysis.

(3) Multi-physics analysis.

There exist many numerical methods. Each of them has its own advantages and

demerits. Table 2.1 lists the weakness and strength of the representative numerical
methods in rock mechanics.
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Table 2.1. Numerical methods for rock mechanics

Numerica Derived- . Multiscale
methods FEM FEM DEM BPM/Lattice MD FEM/DEM methods
Pre-failure v v x x x v v
Post-failure x x v v v v ]
I1l-condition v v x x v | v
Calibration x x x v v ] v
Rock material v v x v x v v
Rock mass X ™ v x x v [l
Dynamic v v v v v v v
Wave v v v v v v v
propagation

I mplementation v X x v v x x

(v': suitable/yes/easy; x: unsuitable/no/difficult; M: theoretically suitable/yes)

It can be seen that there is not a numerical method satisfying al the requirements.
Development of a micro-macro and continuum-discontinuum coupled numerical
method is needed. The selection of the methods for coupling can be based on the
information provided in Table 2.1. From which, the best choice in terms of efficiency
and accuracy turns out to be the combination of the derived FEM and the
BPM/Lattice model. As the degree of freedoms for each particle in BPM is not
consistent with that in FEM, LSM s selected as the microscopic model in this thesis.
However, for the LSM model, the limitation on the Poisson’s ratio and how to
determine the model parameters are the problems need to be solved. In this thesis, a
new LSM model will first be proposed to solve these problems. Then, a
corresponding multiscale model will be developed by coupling LSM with NMM.
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Chapter 3

A microstructure based constitutive model for
modeling elastic continuum

A new micromechanical model is proposed to model the failure of elastic continuum.
The continuum is assumed to have an underlying microstructure consisting of discrete
particles connected by multi-dimensional internal bonds (normal and shear springs),
which has been demonstrated as a useful description for fracture modeling of
materials such as rock and concrete. Due to explicit considerations of the
microstructure of the material, the proposed micromechanical model has the potential
to give more realistic modeling of material failure behaviors than a phenomenological
model does. Constitutive relationship of the moddl is derived from the Cauchy-Born
rules and the hyperelastic theory. Relationships between the micromechanical
parameters of springs and the macro material elastic constants are derived. They can
be used to determine the spring stiffnesses for both discrete ssmulation and finite
element calculation using the micro structural stress-strain relationship. The ability of
the micromechanical model to reproduce the linear elastic parameters was verified
through several examples. Influence of model size and microstructure are aso
investigated. It is found that RMIB model can provide a more general description of
material than linear elasticity. Furthermore, uniaxial tensile test, hydrostatic
compressive test and uniaxial compressive test are simulated by the RMIB model.
Relationships between microstructure fracturing parameters and macro mechanical
parameters are derived. Failure behavior of RMIB model is studied and the results
show that RMIB model satisfies the Tresca criterion. It means that the RMIB model
behaves more like metals. The RMIB model aso provides microscopic explanation of
the Tresca criterion. Due to the limitation of the assumption in RMIB mode!, it is still
not suitable to describe the failure behavior of rock materials.
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3.1 Introduction

Most materials (e.g., ceramics, cement, rock, and bone), when viewed at microscopic
level, are actually discontinuous and heterogeneous with random defects. The failure
of material depends sensitively on the size and spatial distributions of flaws or cracks.
It is the result of the break and evolution of micro-structural components under the
imposed deformation or load. It is important to consider the microstructure of a
material when studying its macroscopic mechanical properties and failure behaviors.
Although discrete simulation techniques such as Molecular Dynamics, Discrete
Element Method, and Lattice Model can directly represent microstructures at given
levels, they are computationally expensive. At present, for large scale engineering
problems, conventional continuum mechanics based methods are still commonly
adopted. Stress-strain relationships used in these methods have been traditionally
derived following a phenomenological approach, without considering the
microstructures of material. Differently, the continuum damage mechanics method
(CDMM) can comprehensively account for the effect of distributed cracks by defining
a damage tensor. However, it is difficult to derive a suitable damage evolution
equation since an explicit representation of the microstructure is missing in the
framework of CDMM. In recent years, a number of attempts have been made to
develop the so-called micromechanical models by explicitly accounting for the
mi cro-discontinuous structures and associating the microstructure properties with the
micromechanical properties. The important feature of the micromechanical models is
that they can yield numerically macro constitutive laws which are valid for solids with
evolving discontinuities and can be directly implemented in the finite element method.
The first micromechanical model in this context may be attributed to the pioneer work
by Gao and Klein [1], who proposed the virtual internal bond (V1B) model to smulate
the crack growth in an isotropic solid. In the VIB model, a continuum element is
represented by an equivalent microstructure consisting of random distributed particles
connected by atomic-like normal bonds. Based on the Cauchy-Born rules [2, 3], a
macro constitutive relationship is derived by integrating the microstructure properties.
At the continuous state, VIB corresponds to a linear elastic solid with a fixed Poisson
ratio, namely, 0.25 for three-dimensional cases and 0.33 for two-dimensional cases.
Later, the VIB was extended to the anisotropic materials by Ganesh et a. [4]. To
represent the diversity of the Poisson ratio, Zhang and Ge [5, 6] developed the virtual
multi-dimensional internal bond (VMIB) modd, in which a shear constraint was
added into the interaction between two coupled particles. An idea similar to the VIB
is adopted in the Peridynamic model, which was proposed by Silling [7, 8] to solve
the crack problem in solid. In the Peridynamic model, two particles are linked through
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real bonds and the basic equations of continuum mechanics are formulated by
integration rather than differentiation. Chang et a. [9, 10] developed a
micromechanical model to simulate the fracture behavior of concrete, assuming the
continuum has an underlying microstructure of lattice type. Each pair of particlesin
the lattice network is connected by three types of spring, hamely, a normal spring, a
shear spring and a rotational spring. The approach used in granular mechanics was
adopted to derive the stress-strain relationship. The model will be named as the
Lattice Spring (LS) model.

Although different microstructures lead to different macromechanical properties, the
above-mentioned models have the following characteristics in common: (i) Materials
are discretized into particles which are connected through spring-type forces; (ii) The
macromechanical response is derived from the microscopic interactions between
particles; (iii) The materia failure at the continuous level results naturally from the
spring failure at the micro-discontinuous level; (iv) The macro constitutive
relationship can be easily implemented into a finite element code. These
characteristics make the micromechanical modeling approaches good candidates for
numerical simulation of continua based on their microstructures. Nevertheless, each
micromechanical model hasits limitations, for example, afixed Poisson ratio for VIB,
a constant original bond length for VMIB, and aregular lattice network and a certain
arrangement of springs for LS. Moreover, for VIB and VMIB, the bonds are
generated randomly without spatial constraints. Therefore, these models are only
conceptual rather than physical.

In this chapter, a new micromechanical model is proposed to overcome some of the
limitations of the existing micromechanical models. The presented model could give a
more redlistic and flexible description of materials and represent the diversity of the
Poisson ratio. The constitutive relationship and the relationship between micro
parameters and material constants are derived and validated through numerical
examples. The results show that the proposed model is more general, including VIB
and VMIB as special cases. Correspondences between micromechanical strength
criteria and continuum strength criteria are studied. Applications of the derived
micro-macro relationship for discrete ssmulation are provided in Chapter 4.
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3.2 Constitutive model

3.2.1 Physical microstructure

In both VIB and VMIB, materials are discretized into mass particles linked through
randomly distributed bonds. The bond here is a virtual concept rather than a real
existence. The springs in the LS model are closer to redlity. However, the regular
arrangement of particles and the same particle size make this model not suitable for
most materials. In this chapter a micromechanical model which takes in advantages of
both VMIB and LS model is proposed. The microstructure of the model is shown in
Figure 3.1. Spherical particles are distributed randomly in space. The particles are not
restricted to the same size. Whenever two particles are detected in contact, they are
linked together through bonds between their center points. The multi-dimensional
internal bond of VMIB is adopted, that include one normal spring and one shear
spring for 3D case and 2D case. Actually polyhedron or another shape of particle is
also acceptable in the model, where bond rather than particle is the main object.
Although the bonded-particle network does not directly reflect the microstructure of
any material, it has been demonstrated as a useful description for fracture modeling of
some materials such as rock and concrete. This underlying microscopic picture can be
regarded as a “real” geometry model of the material’s microstructure. This is the
essential difference from VIB and VMIB. Hereafter, the proposed micromechanical
model will be denoted as the Real Multi-dimensional Internal Bond (RM1B) model.

Contact point i y

(a) Continuum element (b) Multi-dimensional internal bond

Figure 3.1. Microstructure of the Real Multi-dimensional Internal Bond (RMIB) model.
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3.2.2 Constitutiverelationship

As shown in Figure 3.1, the side length of the cubic continuum element istakenas L .
Here the cube could be regarded as the representative element volume (REV) [11].
Consider a deformation state ¢; imposed on the cube. As the cube is represented
through internal bonds, the energy stored in the continuum element is equal to the
sum of energy stored in each bond. As trandation operation of bonds will not
influence their deformation energy, the distribution of bonds in the cube could be
equivalent to a semi sphere distribution as shown in Figure 3.2. Using the spherical
coordinate system as shown in Figure 3.3, the strain energy stored in each normal
bond can be expressed as

u, =%an2( &) (3.1)

where k. is the norma stiffness of the bond, | is the original length of the bond
and & isthe direction vector of the bond which is (sin@cosg,sin@sing,cosé). In
small deformation case strain energy stored in the shear bond can be written as:

u, =%ksu52 (3.2)

where u, isthe relative shear displacement of the bond and k; isthe shear stiffness.
Based on tensor and vector operation, Equation (3.2) can be further written as

Un = 2KI? (66 ~£6,6.6) (B — i) (39

180 180 2 @
(@) RMIB model (b) Equivalent form

Figure 3.2. The RMIB model and its energy equivalent form.
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Figure 3.3. Equivalent bond distribution of the RMIB model under the spherical coordinate system.

Then the total energy stored per unit volumeis expressed as

- w (34)

The stress tensor of the continuum element can be obtained through the Cauchy-Born
rule [2, 3] and the hyperelastic theory [12, 13] and it can be written as

. 5! (knéfjfnenm§m+ks(§kcfk; ~Glmbns))) (35)

The elastic modulus is expressed as

o - 01 5! (kncch,-fncfm+ks(fn;fm—czc;cfncfm)) (36)
0g;0€,, L

Equation (3.5) can be served as a numerica constitutive law which describes the
macroscopic  stress-strain  relationship of material  through its microstructure
information and relatively ssmple microscopic constitutive law. By using Equation
(3.6) the equivalent elastic modulus of the continuum element is obtained directly
from its microstructure information.

40



3.3 Relationship between micro and macro parameters

When the number of multi-dimensional internal bonds in the cube is sufficiently large
enough, Equation (3.6) can bewritten in theintegral form as

Cim = Li JC1T 0 (ke 6+ ke (8u6i6n—E€ L) PUL 0. sinO)odgd! (37)

where D(l,6,¢)sin(8)dédgdl is the number of multi-dimensional internal bonds
per REV in the undeformed solid with bond length between (I,1+dl) and bond
orientation between (6,60+d@) and (¢,¢+dg). Different from VMIB, the bond
length in RMIB varies within the range [l ,l,] and the integration volume in
equation (3.7) is a spherica shell with thickness. For the isotropic material, the bonds
distribute uniformly in each direction as illustrated in Figure 3.3. The bond
distribution function D(l,6,¢) is reduced to N(l)/2z with N(l)dl being the
number of multi-dimensional internal bonds with length between (I,1+dl) in the
continuum element.

In numerical methods, e.g., FEM, the elastic tensor ¢, isoften written in the elastic
matrix form as follows:

Cllll C1122 C1133 % ( 1112 + C1121) % (C1132 + C1123 ) % ( 1113 + C1131)
C:2211 C2222 C:2233 % ( 2212 + C2221) % (C2232 + C:2223 ) % ( 2213 + C2231)
Q — C3311 C3322 C3333 % ( 3312 + C3321) % (C3332 + C3323) % ( 3313 + C:3331) (38)
Clle C1222 C1233 % ( 1212 + C1221) % (C1232 + C1223 ) % ( 1213 + C123l )
C2311 C:2322 C2333 % ( 2312 + C2321) % (C2332 + C2323 ) % ( 2313 + C233l)
L C1311 Cl322 C1333 % ( 1312 + Cl321) % (C1332 + C1323 ) % (C1313 1331 )

For the linear elastic cases, the tangent modulus is equal to the secant modulus and
Equation (3.7) can be considered as the secant modulus. So the following relationship
exists:

o=Q-¢ (3.9)

where 0':[0'11,0'22,0'33,\/50'12,\/50'23,\/50'13T, S—I:S £ _,E 2812,\/5823,\/5813:IT. Here Gi]-

1“2 Y’

and ¢; are the components of stress and strain tensor, respectively. By integrating
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Equation (3.7) and using Equation (3.8), the corresponding elastic matrix is obtained
as.

3k +2k,  k -k =k —k 0 0 0
- 3k, +k,  k,—k 0 0 0
_J, NGO 2k 0 0 0 | (310
151° k, + 1.5k, 0 0
symmetry K, +1.5k, 0
i k, +1.5K |

Let a"’D:L I2|2N(I)dl / L*, then the relationship between the micromechanical

parameters K., k. and the macro material constants, i.e. the Young's modulus E

and the Poisson ratio v can be obtained from Equation (3.10) as follows:

« __ SE _ 3(1-4v)E
"o (1-2v) o (1+v)(1-2v)

(3.12)

Here o can be regarded as a microstructure geometry coefficient. For the two
dimensional problems, Equation (3.7) reducesto

o = o [ (KEE 66K (8,66, -5E,6,)) D0 ool (312)

where A isthe unit length in the third dimension. For the isotropic material, we have
D(l,¢)=N(l)/z and theintegration of Equation (3.12) gives

J-IZIZN(I)dI 3kn+2ks kn_2ks 0
Q= llsT 3k, + 2k, 0 (3.13)
Symmetry K, + 2K

For the plane-stress problems the micro-macro relationship is then obtained as

2E _ 2(1-3v)E

Ki=—p —— K=—5— = (3.14)
o~ (1-V) o~ (1-v)

where o :J'IlzlzN(I)dI / L°’A . In the plain-strain problems the micro-macro
relationship is gilven by
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2E 2(1- 4v)E

K,=—5 , Ky =—55 (3.15)
o (1+v)(1-2v) o~ (1+v)(1-2v)

Given the geometry data of the microstructure, ¢®*° and o can be estimated
through:

a® = ZLJ‘Z = % (3.16)
a® = 2\ =l (3.17)

LPA  AA

where |, isthe original length of the ith bond, V and A are the volume and area
of the geometry model. From now on, given a microstructure, the micro elastic
parameters can be obtained directly from the macro elastic parameters. Reversdly,
once the state of the micromechanical model is determined, the macro elastic matrix
could be obtained directly from Equation (3.12) and used for finite element analysis.
In this sense, the RMIB model can be regarded as a numerical constitutive model or a
stress calculator, i.e., with the input of strain, stress is calculated from the
strain-induced microstructure evolution with simple constitutive law and failure
criterion for bonds. It is important to note that the micro-macro relationships, i.e.
Equations (3.11), (3.14) and (3.15), can also be used to estimate the spring stiffness of
a spring lattice model for discrete simulation. From Equation (3.11), the stiffness of
shear spring becomes negative when the Poisson’s ratio exceeds 0.25. Given a
molecular model as shown in Figure 3.4, where @ (u,) is the potential variation at

v<0.25k,>0

(a) Molecular model of material  (b) The potential energy on molecular B vs ug

Figure 3.4. Physical explanation of the shear spring in material.
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molecular B versus the displacement of molecular A in the shear direction between
A-B. The shape of @, (u,) determines the shear stiffness (see Figure 3.4(b)). When
the potential function is a constant, the shear stiffness equals to zero as there is no
work needs to do for a displacement. The shear stiffness is positive/negative when the
potential function is of an upward/downward bowl shape. Therefore, the proof of
negative shear spring can be based on the potential functions used in MD simulation.
The proof is givenin Appendix A.

3.4 Examples of validation and application

3.4.1 Representation of elastic continuum

The modeled material microstructures were built through computer simulation. Eight
models as shown in Figure 3.5 will be analyzed in this section. The elastic matrix is
obtained through Equation (3.6) and the micro parameters of the model are obtained
through Equations (3.11) and (3.14)-(3.17). This example will show the ability of the
RMIB model to represent the elastic material. The precision of RMIB is evaluated
using the following indexes:

Qfl - Q;l 23 - Q;3
Em="————, Em,= and Err, =
QF 2

11 12 33

e r
le - le

(3.18)

where QF represent the components of the elastic matrix of classical elasticity and
Q| represent the components of the elastic matrix reconstructed by the RMIB model.
These error indexes also measure the ability of the RMIB model to reproduce both the
Y oung’s modulus and the Poisson ratio. In this chapter, the elastic constants of RMIB
model are taken as. E=1 and v =0.2 unless defined otherwise. The results are
given in Table 3.1 for the three-dimensional case (a-d) and the two-dimensional
plain-stress case (e-h), with the total number of bonds increasing from (a) to (d) and
from (e) to (h). It can be seen that as the total number of bonds increases, the RMIB
model gives a more precise description of the elastic properties.



(d)

Figure 3.5. Different 3D (a-d) and 2D (e-h) RMIB models.

Table 3.1. The micro parameters of the RMIB model with different microstructures and the errors of
the RMIB model predictions of the linear elastic properties.

Model a*®/a’® k., k, Em (%) Erm, (%)
a 0.0957 522272 87045 585 15.51
b 0.1344  37.1989 6.1998 0.89 5.60
c 0.2028 24.6588 4.1098 2.73 5.66
d 05516  9.0647 15108  1.48 2.55
e 2.8007 0.8926 0.2975 3.02 5.49
f 2.8512 0.8768 0.2923 4.28 1.74
g 2.9679 0.8424 0.2808 1.56 1.93
h 3.1095 0.8040 0.2680 141 1.50

The ability of RMIB model with regular microstructure is further investigated.
Different regular RMIB models with different model size (5x5x5, 10x10x10,
15x15x15 and 20x20x20) are analyzed (see Figure 3.6). The corresponding errors of
these RMIB models on representing linear elastic material are shown in Figure 3.6. It
can be seen that only Cubicll RMIB model can predict the correct linear elastic
properties. This also means that other microstructure models cannot be correctly
described by classical linear elasticity. It is known that the microstructure of elastic
material can change under mechanical or chemical reactions. So the linear elasticity
may become not applicable for some conditions, while the RMIB model is still
applicable. In this sense, the RMIB model also provides a more general mechanical
description of material under different states.
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Figure 3.6. Different RMIB models of regular microstructure and their errors on representing the linear
elastic properties.
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3.4.2 Failure behaviour of RMIB model

The failure behaviour of RMIB model is studied in this section. It is assumed that
particles of RMIB model are rigid and failure can only happen at the bond between
particles (see Figure 3.7(a)). The micro failure criterion of the bond is shown in
Figure 3.7(b). The bond will be broken when its normal or shear deformation exceeds
the corresponding ultimate value. Force based criteria are not applicable for RMIB
model because the shear bond force always equals to zero when the Poisson’s ratio is
0.25.

0
U,
. Failure
particle
u, o) U,
c Un
Material -
_lJS
(a) Failure principle of RMIB model (b) Micro criterion

Figure 3.7. Failure principle of RMIB model and its micro failure criterion.
There are three possible failure modes. The first one istensile failure and occurs when
Z > Uy (3.19)

u

where u, is the norma deformation of the bond and u, is the ultimate tensile
deformation. The second mode is compressive failure and happens when

-u, > U, (3.20)

where u; is the ultimate compressive deformation of the bond. The last one is shear
failure and occurs when

|ug| > ug (321
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where u, is the shear deformation of the bond layer and u; is the ultimate shear
deformation. The failure process of RMIB model can be simulated by using the
following procedure. First, given the initial stress state O'i? and the final stress state
oy , the deformation state of the ith step is given as

. o’ —ol)i
& = Ql[a? +M} (3.22)
n

After a deformation state ¢; isimposed, the normal and shear deformation for each
bond can be calculated. Then, according to Equations (3.19) to (3.21), the status of
each bond (failure or not) is obtained. Whenever a bond falils, it is deleted and no
longer takes part in the calculation using Equation (3.6). By this way, the eastic
matrix changes accordingly as a result of the damage evolution in the microstructure
and the stress state of the RMIB model can be obtained through Equation (3.9).
Repeating the above calculation from step 1 to step n, the strain-stress curve is
obtained. Figure 3.8 shows the obtained results for the uniaxial tensile test of different
RMIB models. The used micro failure parameters are u, =0.001, u. =1 and u, =1
and control stresses are given as o =(0,0,0,0,0,0) and o =(E/200,0,0,0,0,0).
It can be seen that the strain-stress curve of the regular structured RMIB model has
two peaks (see Figure 3.8(a)). The first one is the ultimate eastic strength and the
second one is the ultimate strength of the model. This kind of strain stress curve is
observed in uniaxia tensile test for some metals. It only has one peak for the random
structured RMIB model (see Figure 3.8(b)). The variation of the main components of
the elastic matrix and the bond broken ratio for these RMIB models during uniaxial
tensile test are shown in Figure 3.9. For the regular structured RMIB model, the
curves of the variations appear a staircase shape (see Figure 3.9(a)). In contrary,
Smooth curves are obtained for the random structured RMIB model (see Figure
3.9(b)). From Figures 3.8 and 3.9, it can be found that the first peak happens when the
bonds begin to break. This value is the ultimate elastic strength of the material. Here,
it is defined as the macro tensile strength o,"°. The strain stress relationship in
elasticity iswritten as

£, =é(ax—v(0'y+az)) (3.23)

Then, the relationship between the micro tensile parameter and the macro tensile
strength is obtained as
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u = d (3.24)

where d is the mean diameter of the rigid particle in the RMIB model and the
ultimate value of &, isestimatedas u,/d .

x 10°

1.8

— -~ — Model size=5

Model size=10
Model size=15
¢  Model size=20

stress

)
[ 4
1
1
1
1
]
|
|
|
:
./ ]
04 | [O) | | | | . . . |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
strain X 10°
(a) Cubic Il
x10°
121
— — — — Model size=5
Model size=10
10 Model size=15
0 *  Model size=20
0.8t
|
|
|
[ 1
S 0.6 |
® '
|
|
0.4t :
1
1
|
0.2+ '
f !
|
/ 1
? |
O [ L 7T\ L L L L L L L I}
0 0.5 kf 1.5 2 2.5 3 3.5 4 4.5 5

strain

(b) Random structure

Figure 3.8. Results of uniaxial tensile test predicted by RMIB model with different microstructures.
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Figure 3.9. Variation of the main components of the elastic matrix and the bond broken ratio of RMIB
model with different microstructures under uniaxial tensile loading.

The influence of Poisson’s ratio on uniaxial tensile failure of RMIB model is givenin
Figure 3.10. It can be seen that the Poisson’s ratio has dight influence on the macro
tensile strength. While the post stage of the strain stress curves is obviously
influenced by the Poisson’ sratio.
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Figure 3.10. Influence of the Poisson’s ratio on uniaxial tensile failure of RMIB models.

It is known that the hydrostatic compressive strength is infinite for most materials,
which means the bond in RMIB model for these cases cannot be broken under
compressive deformation. However, some geologic materials can yield under high
hydrostatic compressive stress. For this kind of materials, the bond has a micro
compressive strength. Figure 3.11 shows the hydrostatic compressive failure process
predicted by the RMIB model with the failure parameters given as u, =0.001,
u,=0.01 and u; =0.001, 0.01, 0.1 for three different tests respectively.
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Figure 3.11. The hydrostatic compressive failure of RMIB model with different microstructures.

The micro shear failure parameter has no influence on the hydrostatic compressive
strength of RMIB model (see Figure 3.11). It means that there exists a one-to-one
relationship between the micro compressive failure and the macro hydrostatic
compressive failure for the RMIB model. From Equation (3.23), this relationship is
derived as

(3.25)
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macro

where o5,

is the hydrostatic compressive strength of the material. The uniaxial

compressive test for the RMIB model only considering the micro tensile failure

(u =0.001) isgivenin Figure 3.12.
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Figure 3.12. Uniaxial compressive test on RMIB model only considering the micro tensile failure.

It can be seen that the micro tensile failure cannot induce the uniaxial compressive
failure in RMIB model. Due to the fact that the bond cannot be broken under
compressive deformation for most materias, the micro shear failure has to be
considered for the uniaxial compressive failure. Figure 3.13 shows the results when
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the micro shear failure of the bond (u; =0.006) is added.
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Figure 3.13. Uniaxial compressive test on RMIB model considering additionally the micro shear

failure.

According to easticity, the following relationship can be established between the
ultimate shear strain and the uniaxial compressive strength as

. _1+vTmacro _1+v

max

xy

E

macro

(o)
£ 3.26

E
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for which 7, =(0,—0,)/2 is applied. Then, relationship between the micro shear

failure parameter and the macro uniaxial compressive strength is obtained as

. 1 macro _
U G A +V2)g° d (3.27)

The uniaxial compressive failure can aso be induced by the compressive failure of
the bond for some materials. Similar to the uniaxial tensile case, we have

u,=2=d (3.28)

where u, is the micro compressive failure parameter under the assumption that the
uniaxial compressive failure is only caused by the compressive failure of the bond.
For the equation (3.27) to be valid, u, must be smaller than u_ given by equation
(3.25). Comparing the equation (3.28) and the equation (3.25), we obtain

o <(1-2v) oy (3.29)
as the precondition for the equation (3.27). For most materias, e.g., rock and metal,
this requirement is satisfied. Acoording to [14], there exist various strength criteria for
different materials. For example, the Tresca and Mises criteria are used to describe
metals and the Mohr-Coulomb and Hoke-Brown criteria are developed for rock
materials. In the following, the strength criteria of RMIB model with random
microstructure is obtianed through numerical simulation of triaxial test. The macro
tensile strength of the model is given as 0.001E and the ratio of the compressive
strength to the tensile strength ranges from 1 to 12. Micro failure paramters are
caculated from Equations (3.24) and (3.27). The simulation procedure is the same as
that described before around the equation (3.22). The obtianed strength criteria of the
RMIB model are shown in Figure 3.14(a). Here o, is obtained from the simulated
faillurecurveand o, changesfor different tests. The incline angles of the linear parts
of these curves are listed in Table 3.2. For metals, the tensile strength is equal to the
compressive strength. For this case, it is found that the reproduced criterion by the
RMIB modéd is very close to the Tresca criterion. In this sense, RMIB provides a
microscopic interpretation of the Tresca criterion.

The modeling results in this sectoin show that the RMIB model is suitable for

55



desribing the tensile failure of rock material. However, it is not suitable to model the
compressive failure of rock material as the frictional angle of the RMIB moddl is
nearly zero. This may be due to the uniform deformation assumption in the RMIB
model.
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Figure 3.14. Reproduced failure criteriaby RMIB models.

Table 3.2. Theincline anglesin failure curve of RMIB model with different Poisson’s ratios.

o./o | 12 10 8 4 1

0.1 | 451306 44.0454 44.9564 44.6342 445175
V | 02 | 44.8466 443021 44.9991 44.6342 445175
03 | 410168 415483 423037 44.5633 445175

3.5 Conclusions

In this chapter, the real multi-dimensional internal bond model (RMIB) has been
developed, which is more physically redlistic than the existing models of the same
function of microstructure-based constitutive modeling. Based on the Cauchy-Born
rules, a constitutive relationship is derived, which bridges the micro mechanical
parameters and the macro material constants. The RMIB model can represent the
diversity of the Poisson’s ratio. It can be regarded as a generalized version of the
VMIB model. It is found that the linear elastic material can be well represented by
RMIB. The relationship between the micro failure parameters in the RMIB model and
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the macro mechanical failure parameters are derived. Uniaxia tensile test, hydrostatic
compressive test and uniaxial compressive test are simulated by using the model. The
macro strength criterion obtained by the RMIB model is found to be similar with the
Tresca criterion. It means that the RMIB model behaves like metals. It turns out that
the RMIB model is not suitable for modeling rock materials due to the limitation of
the basic assumption in the model. Further improvements of the model by releasing
the limitation will be reported in the following chapters.
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Chapter 4

Distinct lattice spring model (DL SM)

A 3D distinct lattice spring model (DLSM) is proposed where an object is discretized
into individual particles linked by springs. The presented model is different from the
conventional lattice spring models in that a shear spring is introduced to model the
multi-body force by evaluating the spring deformation from the local strain rather
than the particle displacement. By doing this, the proposed model can represent the
diversity of the Poisson’s ratio without violating the rotational invariance. The local
strain of the spring is calculated through a least square method which makes the
model possessing meshless properties. Because of this and explicitly representing the
microstructure, DLSM is able to model dynamic fracturing problems and can be used
to study the microstructure influences. The material parameters inputted in the model
is the conventional material parameters, e.g., the elastic modulus and the Poisson’s
ratio. Relationships between microscopic spring parameters and macroscopic material
constants are derived based on the Cauchy-Born rules and the hyperelastic theory.
Numerical examples are presented to show the abilities and properties of DLSM in
modeling elastic and dynamic failure problems.

4.1 Introduction

The classical elasticity theory could provide an adequate description of the
macroscopic mechanical response of most materials, even though they are actually
heterogeneous when viewed at the microscopic level. However, dynamic fracturing of
heterogeneous materials such as rock and concrete cannot be modeled realistically
without appealing to their microstructures. This requires that a successful numerical
method must be capable of considering not only the elastic stage, but also the
formulation and evolution of micro discontinuities. Lattice models [1, 2] represent

material by a system of discrete units (e.g. particles) interacting via springs, or, more
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generdly, rheological elements. These discrete units are much coarser than the true
atomic ones and may represent larger volumes of heterogeneities such as grains or
clusters of grains. Lattice models are close relative to the common finite element
method (FEM) when dealing with elastic problems. Yet, due to their discrete nature,
lattice models are known to be more suitable for complex fracturing simulation. For
example, lattice models have been successfully applied to investigate the spatial
cooperative effects of crack formation and heterogeneities in elastic-plastic [3] and
elastic-brittle [4] systems.

However, for lattice models composed of normal springs transmitting central forces
only it is known that the modeled Poisson’ s ratio approaches, in the limit of an infinite
number of particles, a fixed value e.g. 1/4 in three-dimensional cases. This kind of
problem has been reported for example in the works of Beale and Strolovitz [5],
Srolovitz and Beale [6], Nayfeh and Hefzy [7] and Donze and Magnier [8]. Such
restriction is not suitable for many materials. It can be overcome by introducing
non-central shear-type interactions between particles. One possible way is to add
shear spring between each pair of particles. This approach was applied by Kawai [9]
and Zubelewicz and BaZant [10]. It was investigated in greater detail by Griffiths and
Mustoe [11] and refined by Cusatis et a. [12]. The addition of shear spring allows
these lattice models to model the Poisson’s ratio less than 1/4. In addition to the
particle displacements, these models also introduce the particle rotations as degrees of
freedom, hence can be viewed as discretizations of micropolar continua. Another
approach is to replace the normal springs by beams, which yields the so-called lattice
beam models (LBMs) [13-16]. LBMs consider not only rotations but also bending
deformations. There are arguments on the inclusion of the latter. For example, Cusatis
et a. [12] pointed out that the bending of beams is not a characteristic of the physical
phenomena in the microstructure. Attempts have aso been made to tackle the
problem without the cost of introducing rotational degrees of freedom. The models
obtained in this way are usually called as lattice spring models (LSMs). Hassold and
Srolovitz [17] proposed a method to modify the Poisson’s ratio by introducing a
harmonic potential for rotation of bonds from their initial orientation. Here bonds
denote the connecting elements between particles. A non-central two-body interaction
l[imiting the rotational freedom of bonds is introduced in the Born spring model [18,
19] to alow a broad choice of the Poisson’s ratio. Nevertheless, rotational invariance
of the models can only be recovered if a three-body interaction is considered. The
Kirkwood-Keating spring model [20, 21] introduces angular springs to penadize the
angular variations between the contiguous bonds incident onto the same node.
Modeling the multi-body interactions by angular springs is not so convenient (the

59



angular terms are nonlinear functions of displacements) and may bring difficulties in
the failure modeling. Although the aforementioned approaches relax the restriction,
they cannot model Poisson’ s ratios greater than 1/4.

In this chapter we propose an aternative 3D dynamic lattice spring model which
overcomes the restriction on the Poisson’s ratio while preserving the rotationa
invariance. The model includes a normal spring and a multi-body shear-type spring
for each pair of lattice points (particles). The lattice structure can be either random or
regular. It shall be shown that negative shear stiffness can be adopted in the proposed
model to allow the full range of the Poisson’s ratio of elastic solid to be modeled. The
deformation of the shear springs is evaluated by using the local strain rather than the
particle displacement. It shall be proven that this technique makes the model
rotationally invariant. The local strain is calculated by a fully meshless approach
which avoids meshing or re-meshing in case of fracture ssimulation. The method of
solving system equations is the same as used in DEM developed by Cundall [22]. In
view of the multi-body shear spring and the solver used in the model, we name it as
Distinct Lattice Spring Model (DLSM). In DLSM, there is no need to form the global
stiffness matrix and only a local interaction is considered during calculation. This is
very suitable for large scale paralel computing implementation. The context of the
chapter is organized as following. Firstly, the proposed model and associated
numerical techniques are described. Secondly, the relationship between micro spring
stiffness and macro elastic constants is derived. Then, the model is validated through
numerical simulation of three elastic problems, one wave propagation problem and
two dynamic failure problems. The chapter ends up with some conclusions and
remarks.

4.2 Distinct Lattice Spring Model (DL SM)

This section will give the basic conception, formulations and numerical techniques
used in the distinct lattice spring model. At the beginning, the physica model and
eguation of motion of the system and the solution method will be introduced. Then,
mathematical formulation of the interactions between particles will be addressed. The
multi-body shear spring is introduced in a distinct way using the local strain to
evaluate the shear deformation. A least square method is used to obtain the local
strain. The damping scheme and time step selection will be discussed in the last part.
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4.2.1 Physical model and system equations

In DLSM, material is discretized into mass particles with different sizes. Whenever
the gap between two particles is smaller than a given threshold vaue, the two
particles are linked together through a bond between their center points (as shown in
Figure 4.1(a)), which consists of normal and shear springs. The threshold value will
influence the lattice structure of the model; different threshold values would produce
different lattice structures. Thiswill be discussed later. The particles and bonds form a
network system representing the material. For this system, its equation of motion can
be expressed as

[KJu+[C]u+[M]u=F(t) (4.2)

where u represent the vector of particle displacement, [K| the stiffness matrix,
[M] the diagonal mass matrix, [C] the damping matrix, F(t) the vector of
external force. Equation (4.1) is solved by using the explicit central finite difference
scheme, which was reported by Rougier et a. [23] as the most efficient and robust
method among the various explicit integration schemes. The calculation cycle is
illustrated in Figure 4.1(b). Given the particle displacements (either prescribed
initially or obtained from the previous time step), new contacts and broken bonds are
detected. The list of neighboring particles for each particle is updated. Then, contact
and spring forces between particles are calculated according to the prescribed
force-displacement relations. The particle velocity is advanced individually as

F(t)

ui(t+At/2) — ui(t—At/Z) + j At (4.2)
m

P
where u**? s the particle velocity at t+At/2, u™"? the particle velocity at
t—At/2, m, the particle mass, > F" the sum of forces acting on the particle i
including applied external forces, At the time step. Finaly, the new displacement of
particle is obtained as

u(t+At) — u(t) + L]i(tmt/z)At (4.3)

t+At)

isthe displacement at t+At, u the displacement a t. This central

where ui(
difference scheme is equivaent to the Newton's second law used in DEM and MD
simulations. In the next subsection, the formulation of the interaction forces between

particlesis described.
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Figure 4.1. The physical model and the calculation cycle of DLSM.

4.2.2 Interactions between particles

Figure 4.2(a) shows the forces exerted on one particle. These forces are made up of
the external force and contact force between particles. The interaction between linked
particles is represented by one normal spring and one shear spring as illustrated in
Figure 4.2(b). Different from the conventional LSMs, the shear spring is introduced to
model the multi-body non-central interaction and make the model capable of handling
problems with a variable choice of the Poisson’s ratio. The norma spring is
implemented in a conventional way. For a bond connecting particle i and particle j,
the normal unit vector n=(nX,ny,nZ )T pointing form particlei to particlej is defined

(see Figure 4.2(c)). Therelative displacement is calculated as
u; =u; —u, (4.4)
The normal force between the two particlesis defined as
Ay =ku; (43)

where k. is the tiffness of the normal spring and uf} =(u; en)n is the vector of
normal displacement (see Figure 4.2(c)).
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Figure 4.2. The force and displacement relationships between two particles and the micro constitutive
laws.

For the shear spring, the relative shear displacement between two particles can be
obtained simply as u;=u,-u; like in some conventional lattice spring models.
However, it is straightforward to show that the shearing force calculated in thisway is
not rotationally invariant. To overcome the problem, we propose a local strain based
method. Assuming the strain at the two particles is evaluated as [¢] and [e]
respectively, the strain state of the connecting bond is given as the average of the two
particle strains:

], +[e],

le],, = 5 (4.6)
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where [g]= . The shear displacement vector is obtained as

M M M

s =[e]_, 'nl-(([a]bond ‘nl)‘n)n (4.7)

where | istheinitial bond length, i.e. theinitial distance between the pair of particles.
Then the shearing force between the two particles reads

Fr=k; (48)

where k; isthe stiffness of the shear spring. The proposed method here together with
the strain calculation procedure described in the next subsection ensures that the
model preserves the rotational invariance of LSM consisting of normal springs only. A
proof of thisis given in Appendix B.

Equation (4.5) and Equation (4.8) are valid for unbroken bonds. The failure criterion
used in DLSM is shown in Figure 4.2(d). When the normal or shear displacement of
the bond exceeds the prescribed value, the bond is broken and becomes a contact
bond for which only a normal spring with zero strength is applied. At current stage,
only a ssimple fracture criterion is adopted and more comprehensive study on the
fracture criteria is needed. The proposed model has only two spring parameters and
two failure parameters. Hence it is suitable for microscopic modeling as the less input
parameters the easier to observe and study the microstructure influence on the
mechanical response of materials.

4.2.3 Least square method for obtaining thelocal strain

In DLSM, the local strain of one particle is evaluated by aleast square scheme which
only uses the displacement of itself and other particles which have intact bonds with
the particle. By doing so, discontinuities (e.g. fracture/crack) could be directly
considered without using the “visibility criterion” adopted by most meshless methods.
First, assume the displacement function within a small volume (cloud) around the
particle can be approximated as alinear function

f(X,y,z)=ax+by+cz+d (4.9)

64



Given the displacement of all the particles in the cloud, the coefficients of Equation
(4.9) can be estimated by using the least square method. Taking the x-component of u
as an example, it is achieved by minimizing the quadratic equation

’ =§(ujx_ajx)z (4.10)

where n is the number of particles in the cloud, u,is the x-component of u a
particlej and U, isitscorresponding approximated value which is given as

U, = ax, +by, +cz, +d (4.12)

The coefficients are obtained as

a=(a b ¢ d) =(ATA)"(ATB) (4.12)
where
x ¥ oz 1 U,
1 u
A= X2 %2 ZZ and p=| " (4.13)
Xn yn Zn 1 l'Ir'IX
Using this approach, the approximated displacement field in the cloud is obtained as
linear functions, of which first-order derivativesyield the strain, e.g., ¢, = aaux =a.
X

The least sgquare method used in DLSM makes the model fully meshless and the
inverse matrix of A'A (4x4) can be calculated very fast. In a practical simulation,
the inverse of A" A may not exist in some conditions. In this case shear spring will
not be considered anymore for the relevant particles. Since the least sguare
approximation is first-order consistent, it can be proven that the calculated strain is
independent of rotational displacement (see Appendix A).

4.2.4 Damping and time step

The solution scheme used in DLSM is conditionally stable. To keep the computation
stable, the time step could be chosen according to the requirement that it is less than
the time needed for elastic wave propagation through the smallest element of the
model. Thisleadsto
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(1
At = mln(c—] (4.14)

p

where C; is the P-wave velocity of the model, |, istheith spring length of the model.

The P-wave velocity of the model can be obtained through

C,= /Lm (4.15)
P

where p isthe density, K and G are the bulk and shear elastic modules of the
model which have relationship with the elastic module E and the Poisson’s ratio v
asfollowing

E
E
G=3 oy (4.17)

It should be mentioned that the input parameters of DLSM are macroscopic elastic
parameters rather than microscopic spring parameters. This makes the DLSM
modeling consistent with the conventional FEM modeling. The relationship between
macroscopic elastic parameters and microscopic spring parameters will be introduced
in the next section.

Mechanical damping is used in DLSM to obtain static solutions. For static analysis,
the approach is conceptualy similar to dynamic relaxation proposed by Otter et al.
[24]. The equations of motion are damped to reach a force equilibrium state as
quickly as possible under the applied initial and boundary conditions. A local damping
scheme, which is used in the DEM to overcome the difficulties of the
velocity-proportional damping, is adopted in DLSM. When the loca damping is
incorporated, the equation of motion, Equation (4.2), is replaced by the following
equation:

ui(t+At/2) — ui(t—At/Z) +{z Fi(t) _ a‘z Fi(t)‘sgn(ui(t—m/z) )} % (4.18)

p

where « isthe damping constant (set to 0.8 in DLSM) which is dimensionless and
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independent of mechanical properties and boundary conditions. This type of damping
is equivalent to alocal form of adaptive damping. By using this damping scheme, the
damping forces vanish for steady-state conditions. The local damping is reported to be
under-damped in general. For the dynamic case, DLSM switches off the damping
term (o =0). As a microscopic based model, it is regarded the dynamic effect of
spring bond can be neglected. The inertia effect, which reported by Li et al. [25] asthe
main influence of experimental observation, can be automatically considered as the
Newton’'s second law isused in DLSM.

4.3 Relationship between spring parameters and elastic

constants

In DLSM model, the inputted elastic parameters are the macro material constants, i.e.
the Young's modulus E and the Poisson ratio v, in order to keep consistent with
classica FEM. During calculation, the micromechanical parameters are automatically
calculated based on the RMIB theory in Chapter 3. Considering the materia
heterogeneity, Equation (3.15) is rewritten into following form:

= 330[ &, 5 ] (4.19)
2007\ 1-2v,  1-2v,
__3 (1-4v)E (1-4v)E
K= 20 ((1+ V) (1-2v) ’ (1+v;)(1-2v, )] (4.2

where E and E; arethe Young's modulus assigned to the linked particles, and v;

and v, are the corresponding Poisson ratios. The o™ is the microstructure geometry
coefficient of the lattice model, which can be directly obtained from Equation (3.16).
As the least square scheme is used in DLSM, the model can be viewed as a totally
meshless method. There is not integration domain needed and the model only needs a
collection of points. In this sense, the DLSM can aso be regarded as a new meshless
method where the PDESs are approximated through lattice model.
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4.4 Numerical Examples

4.4.1 Simple cube under puretensileloading

In this section the pure tensile loading of a cubic cell with a length of 10mm is
simulated. The purpose is to study the influence of lattice structure on the mechanical
response. The model setup and three different particle distributions are shown in
Figure 4.3(a). The first one is the simple cubic model for which particle arrangement
is shown in Figure 4.3(b). The ssmple cubic structure is one of the most common
crystal structures. The second one is the body-centered cubic (BCC) model. The third
one is the random distributed model which is generated by the PFC3D code of Itasca
Consulting group and the details of this generation method were described in [26].
The lattice structure is formed according to the threshold value of particle gap.
Different threshold values would lead to different lattice structures. Figure 4.4 shows
the structures of the three particle models.

Fixed Y direction

Fixed X direction

Fixed Z direction

(a) 1/8 part of the specimen

(c) Body centered structure (d) Random structure

Figure 4.3. The 1/8 part of the cubic cell under uniaxial tensile loading and different microstructures.
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(c) Cubic I11

»
»
LTS

(d)yBCCI (e) BCCII (f) Random structure

Figure 4.4. Different lattice structures created by using different interaction ranges.

For the ssimple cubic case, there are three types of structure: cubic | (shown in Figure
4.4(a)), cubic Il (shown in Figure 4.4(b)) and cubic Il (shown in Figure 4.4(c)). For
the BCC model, two types of structure are considered, the first one is BCC | (shown
in Figure 4.4(d)) and the second one is BCC Il (shown in Figure 4.4(e)). For the
random structure, only one case is studied (see Figure 4.4(f)). The number of particles
is 125 in the ssimple cubic model, 189 in the BCC model and 100 in the random model.
Simulations are performed to study the microstructure influence on the mechanical
response of the lattice model. All the models are calculated for different Poisson’s
ratios ranging from 0.2 to 0.3 and a fixed elastic modulus 10GPa. The time step is
selected according to Equation (4.14). The simulation results show that this time step
selection criterion is correct. For obtaining a static solution, the local damping scheme
is used.

The Equation (4.20) indicates that a shear spring of negative stiffness would occur

when the Poisson’s ratio is greater than 1/4. The negative spring seems non-physical,

but for DLSM, shear spring is introduced in a way to model the multi-body

interactions, so negative stiffness may result from a structural effect of the high

Poisson’s ratio material. In reality, materials with negative stiffness are aso reported

and used for extreme damping in composite materials [27]. From previous simulations,
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it is shown that the lattice model is convergent for most of the lattice structures except
for the cubic | case. Figure 4.5 shows the kinetic energy varying with the iteration
steps during the cal culation using the cubic | model. For the stable case (v <1/4), the
model will reach a static equilibrium state and the kinetic energy of the model will be
zero as shown in Figure 4.5(a). While for the unstable case the kinetic energy
increases to a divergent state and the model collapses as shown in Figure 4.5(b).
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(a) The stable case

140°

120°

100°
©
>80/
)
& .
o 60
@
=
=< 40(

20

00 500 1000 1500 2000 250
step
(b) The unstable case

Figure 4.5. The stable and unstable case of DLSM for simulating tensile loading of a simple cube.
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Table 4.1 lists the simulation results of different models with different Poisson’s
ratios. Results shown are the z-direction displacement of the center particle in the top
surface. Since the particle is a sphere with a radius of 1mm and the boundary force
(P=1MPa) is applied on the centre of the sphere, the effective length is H, =8mm
(the sample length minus twice of the radius). So the expected value for the
z-direction displacement is H_P/E =0.0008mm for all cases. From the results we can
see that the cubic | and cubic 111 are not good for the simulation of isotropic elasticity.
Because the first one is unstable for the Poisson’s ratio greater than 1/4 and the
second one cannot reflect well the correct Poisson’s effect (the displacement is too
sengsitive to the change of the Poisson’s ratio). We see that the predicted
displacements of the measured particle have relative errors of about 20% for each
case. Thisisdue to asmall number of particles being used. Our purpose in this section
is not to compare the elasticity solution with the lattice model but to study the
structure influence on the mechanical behavior of the proposed lattice model. In the
following section a more complex problem will be simulated.

Table 4.1. The z-direction displacement predicted by different microstructure models with different
Poisson’s ratios for the simple cube problem.

Poisson’sratio
u,(Mm) | 92 025 030
cubic| 0.00038 0.00032 - (unstable)

cubicll | 0.00058 0.00058  0.00057

cubic Il | 0.00072 0.00086  0.00120
BCCI 0.00057 0.00058  0.00058
BCCII 0.00060 0.00062  0.00065

Models

Rand 0.00070 0.00073  0.00078

*The expected value is 0.0008mm for al the cases.

4.4.2 Beam subjected to bending

The previous example shows that the lattice structure has great influence on the
simulation results. It is found that the Cubic | lattice structure is not stable and cannot
be used to model the elasticity correctly. In this section, a problem with more complex
loading conditions is simulated using a large number of particles to further check
whether DLSM could reproduce the elasticity correctly. Another purpose of this
example is to screen out the most proper lattice structures. Figure 4.6 gives the
geometry information, boundary conditions and material parameters. The left end of
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the beam is fixed and the right end is subjected to a shearing force of IMPa. The
beam will undergo a complex stress condition, i.e. tensile, compressive and shear
stress would appear. Figure 4.7(a) shows the FEM model and the DLSM model of
different structures.

E =10GPa
/’ 10mmx10mm |, =0.3
X

p = 2500kg/m°

¢ P—1MPa

/ 40mm

X

Figure 4.6. The boundary conditions and material parameters for the beam bending problem.

The resolution of the FEM model is 10x10x40 using 4000 evenly distributed
8-node elements. The lattice model has 4000 particles in case of regular structure and
4965 particles in case of random structure. Figure 4.7 shows the ssimulation results of
FEM and DLSM. It is found that the lattice model could reproduce the same
displacement distribution as the FEM model. This means the lattice model can be
regarded as a valid representation of isotropic elastic material. Quantitative
comparison is given in Figure 4.8, where the y-direction displacements of the middle
line of the beam predicted by FEM and DLSM are shown. The results of the lattice
model with cubic I, BCC I, BCC Il and random structure have a good agreement
with the FEM solution. However, the model with cubic Il structure does not yield
satisfactory results. Thisimplies that the cubic I11 structure does not correspond to an
elastic material. Comparing with the first example, the number of particles plays a
very important role in the lattice spring model for accurate modeling of the isotropic
elasticity and the relative error here is reduced to 5%. It is important to point out that
the simulations have been performed with Poisson’s ratio of 0.3, i.e. negative shear
springs being used. All of these models are convergent and correct solutions are
obtained as demonstrated by the results presented in Figure 4.8. From the above
studies, it can be concluded that the Cubic Il structure is the most suitable lattice
structure in terms of accuracy and efficiency. This structure is much easier to be
generated (compared with the random one) and contains a smaller total number of
particles for the same model resolution (defined by the number of divisions in each
dimension) compared with the BCC structures. As the contour map cannot give a
guantitative comparison between DLSM and FEM results, two section lines, Line |
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FEM DLSM (Cubic 1)
(a) The numerica models

FEM DLSM (Cubic I1) DLSM (Random)
(b) The z-direction displacement

FEM DLSM (Cubic I1) DLSM (Random)
(c) They-direction displacement

FEM DLSM (Cubic 1) DLSM (Random)
(d) The x-direction displacement

Figure 4.7. Numerical models and contour plot of the displacement results predicted by FEM and
DLSM for the beam bending problem with Poisson’sratio of 0.2.
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((0.125,2.125,2.125)-(39.125,2.125,2.125)) and Line Il ((0.125,8.125,8.125)-
(39.125,8.125,8.125)), are selected to record displacements predicted by the DLSM
model using a higher resolution with particle size of 0.25 mm. A full comparison with
the displacement field of FEM is given in Figure 4.9. It can be seen that the
displacement field predicted by DLSM is amost identical to that of FEM model. For
the y-direction displacement along these two lines, the maximum errors of the DLSM
model are 1.53% and 1.13% respectively. Additionally, a lender beam problem (see
Figure 4.10 (a) for detailed problem description) which was solved by using another
discrete lattice model in [28] is smulated by DLSM. Particle size used is 1mm and
the DLSM modeling result is shown in Figure 4.10(b). The predicted top-end
displacement is 3.967mm which is 0.82% stiffer than the analytical solution, while the
discrete model in [28] with similar resolution provided an error around 10% to 15%.
For the two beam bending problems, the regular Cubic Il structure can predict correct
results. However, DLSM model based on the Cubic Il structure is not strictly isotropic
because of the regular arrangement of particles and hence the non-uniform
distribution of bonds. The influence of this kind of anisotropy on the numerical
simulation of isotropic elastic materials will be studied in the next example.
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0.1+
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E 015}
c
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=
Z -0.25¢
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g 0.3
g 03 FEM solution N
g 0.351 O Cubic structure Il \
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04l —<O— BCC structure | \\
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Figure 4.8. The y-direction displacement along the middle line of the beam predicted by FEM and
DLSM with different lattice structures with Poisson’sratio of 0.3.
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Figure 4.9. Full comparison of displacement field predicted by FEM with DLSM with Poisson’sratio
of 0.3.
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(a) The slender beam DLSM model (b) DLSM modeling result

Figure 4.10. The dlender beam problem and the results of the DLSM model.

4.4.3 Brazilian test

In this section the Brazilian disc problem is selected to study the anisotropic effects of
the DLSM model. As shown in Figure 4.11, two DLSM models of two different
|attice structures are used for this study. The elastic properties of the modeled isotopic
material are E=10GPa and v =0.2. The average particle diameter of the random
lattice model generated by PFC is 7.15mm and that of the Cubic Il lattice is 5Smm. In
order to check the anisotropic behavior of the two DLSM models, the original models
are rotated to different angles (10°, 30°, 45°) as shown in Figure 4.12. The strain
component ¢, at center of the disc is calculated by the rotated models and is
compared with the value obtained by the origina model. From the results given in
Table 4.2, it can be seen that for the random model, the differences caused by the
rotation are small (less than 2%) and for the Cubic || model the maximum difference
happens at the rotation angle of 45°, which reaches 9.2% for a low space resolution.
In this sense, the random model is a more realistic choice for the simulation of
Isotropic elastic materials. However, as we mention before, the generation of this kind
of model is complex and time consuming. Regarding to the fact that the Cubic 11
model with a high resolution (100x100x10) reduces the maximum difference to
5.34% (see Table 4.2), which is acceptable for practical applications, we recommend
it be an alternative choice, especially when efficiency is considered to be prior. The
particle size of the high resolution DLSM model is 1mm and the whole model is made
up of 100000 particles. This DLSM model is then used to simulate the Brazilian disc

problem for different Poisson’s ratios. The results obtained by different methods
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(a) The random lattice structure model (left: plane view)

P=100KN/mm
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(b ) The Cubic II lattice structure model (left: plane view)

Figure 4.11. Two lattice structures for the Brazilian disc problem.

(3) Random 0’ (b) Random 10° (c) Random 30’ (d) Random 45°

() Cubic11 0 (f) Cubic 11 10° (g) Cubic 11 30° (h) Cubic 11 45°

Figure 4.12. The lattice models with different rotation angles for the Brazilian disc problem.
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Table4.2. Predicted £, (10°®) at the disc center by DLSM models with different rotated angles.

Rotation Random model Cubic |1 model Cubic Il model (high resolution)
angle (°) e Error (%) €9 Error (%) €0 Error (%)

0 0.0717 0.00 0.0674 0.00 0.0749 0.00

10 0.0718 0.11 0.0651 341 0.0738 147

30 0.0710 0.94 0.0644 4.45 0.0738 147

45 0.0705 1.65 0.0612 9.20 0.0709 534

including FEM as a reference solution are summarized in Table 4.3, where CLSM
stands for the classical lattice spring model which directly calculates the deformation
of shear springs using the particle displacement. Here, the particle size of DLSM and
CLSM are both taken as 1mm. Cubic Il is selected as the lattice type. The eastic
module is taken as 10GPa and the Poisson’ s ratio is taken as 0.10, 0.20, 0.25 and 0.30.
The spring parameters are calculated based on Equations (4.19) and (4.20) for both
DLSM and CLSM. The comparison is used to illustrate the importance of keeping
rotation invariance. From the results, it can be seen that the Poisson’s ratio has a great
influence on the results and the Poisson’s ratio dependant mechanical response can be
well captured by FEM and DLSM. However, CLSM could only provide reasonable
results at the Poisson’s ratio of 0.25 when shear spring is not present. This indicates
that preserving the rotation invariance is very important for the lattice spring model.

Table 4.3. Results predicted by FEM, DLSM and CLSM for the Brazilian disc problem.

Possion’'s FEM &, DLSM CLSM
ratio (10 £0 (109) Error (%) £ (10°) Error (%)
0.10 0.0794 0.0749 5.6 0.0207 74.0
0.20 0.0982 0.0041 4.1 0.0545 44.5
0.25 0.1076 0.1040 33 0.1040 3.3
0.30 0.1170 0.1144 2.3 - (unstable) - (unstable)

4.4.4 Elastic wave propagation

Wave propagation can be viewed as the transmission of dynamic loads trough
materials. It is an important research issue in dynamic failure study. For example, the
prediction of wave attenuation across fractured rock masses is very important in
solving problems in geophysics, seismic investigations and rock protective
engineering. Numerical methods and computing techniques have been proven as a
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powerful and effective tool to simulate and model rock mechanical problems, for
example in the work of Chen and Zhao [29], wave propagation in jointed rock masses
was studied through DEM. The following example will show the ability of DLSM in
modeling wave propagation in elastic materials. Wave propagation through an
assembly of discrete bodies is, in general, dispersive. That is, the apparent wave
velocity depends on wavelength, particularly for wavelengths that approach the
average particle size. For longer wavelengths, the propagation behaviors like in a
continuous elastic medium without an internal length scale. The example illustrates
wave propagation through a one-dimensional bar composed of 20000 particles bonded
together. The right end of the bar is free and an input pulse is applied at the left-hand
boundary. In DLSM, the input parameters are the macroscopic parameter and the
microscopic parameters are automatically computed from Equations (4.19) and (4.20).
In the following calculations, it is assumed that the elastic modulus is 80.461GPa and
the Poisson’s ratio is 0.2563 and the rock density is 2600kg/m®, which are typical
parameters for the Bukit Timah granite. The theoretical wave velocity of P-wave and

S-waveis calculated as:
c,= K F45/3 6128 68 s
P

C.=\/G/ p=3508.295 nv/s

where K and G are the bulk and shear stiffness of the material which can be
obtained from Equation (4.16) and Equation (4.17) and p is the density. A
half-cycle sinusoidal wave with 1M Pa amplitude is applied at the left boundary as the
incident wave, where the sinusoidal wave is 50000Hz. Three detection points
A(4.5,4.549.5), B(4.5,4.5,99.5), C(4.54.5,149.5) are placed in the bar to record the
wave propagation. Figure 4.13 shows the propagation of P-wave and S-wave at the
three points. From these data we obtain

A -3
¢ =t 100x10 _=6257.8m/s
th.  2.862x10°—1.264x10
. 3
e _ 100x10 =3527.3m/s

° 5. 4.725%x10°-1.890x10°

where ép and és are the calculated P-wave speed and S-wave speed. d,. isthe
distance from A point to C point. ty. and t,. are the time used for P-wave and
S-wave transmitted from A point to C point. The error of the calculated speed is 2.11%
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for P-wave and 0.54% for S-wave. It can be concluded that DLSM could predict
correct wave propagation speed. The Poisson’s ratio is greater than 0.25, so again the
model here has negative shear springs involved. This means negative spring is also
applicable in DLSM for dynamics problems. Figure 4.14 shows the contour map of
particle velocity on P-wave propagation. From this figure, the propagation and
reflection of the stress wave can be observed clearly. Overadl, this example
demonstrates that the dynamic behaviors of elastic material could be well predicted by
DLSM and gives us confidence to use DLSM to study the dynamic failure behavior of
elastic material.
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Figure 4.13. Wave propagation history at the detection points.
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t=18us t=27us

t=36us t=45us

Figure 4.14. The process of wave propagation through the elastic bar predicted by DLSM.

4.4.5 Dynamic spalling of 3-D bar

The dynamic spalling of quasi-brittle material occurs when an incident compressive
wave is reflected by a free end and transformed into a tensile one. Spalling happens
when the inputted incident compressive stress wave is lower than the material
compressive strength while larger than its tensile strength. It has been successfully
simulated by FEM in the work of Zhu and Tang [30]. In this subsection, the ability of
DLSM on modeling dynamic fracturing process will be studied through this example.
The geometries and loading conditions for the bar model are shown in Figure 4.15.
The mechanical properties of the bar are as follows: the Y oung's modulus is 60.0 GPa,
the direct tensile strength is 19.0MPa, and the Poisson’s ratio is 0.20. The model is
200mm in length, 10mm in width and height, and it is discretized with 200x10x10
particles. The incident compressive stress wave is applied at the left end of the bar.
The right end is keeping free during calculation. Other faces are fixed in their normal
directions. Two cases were simulated. Different compressive incident waves were
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applied on the left surface of the model (as shown in Figure 4.15) to study the stress
amplitude influence on the spalling failure.

Stress wave |
Stress wawe |l

p (Mpa)

10mmx10mm

26 3;0 4‘0 56 éO 7‘0 éO 96 160

t(s)
Figure 4.15. The incident compressive stress waves with different peak amplitudes applied on the left
surface of the bar.

For the incident compressive stress wave | ( p,,,, = 20MPa), a fracture face located at
24mm from the right end of the model is detected (see Figure 4.16). The principle
behind this phenomenon can be explained as follows. First, the compressive stress

Failure surface at 24mm from the end.

Figure 4.16. Dynamic spalling predicted by DLSM (incident compressive stress wave of 20MPa).
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First, the compressive stress wave travels through the bar and reaches the right end.
Because of the wave reflection, the original compressive stress wave will be
transformed into a tensile stress wave which eventually induces the failure. After this,
the strain energy is released and the stress amplitude of the residua wave is not large
enough anymore to cause further failure. For the incident compressive stress wave |1
(pmax=40MPa) where the peak value of the stress is twice bigger than the tensile
strength of the material, two apparent successive spalling failures occur (see Figure
4.17). The first fracture surface happens at 12mm from the right end of the model.
After failure, the yielded surface reduces a portion of the original wave (see Figure
4.17). Meanwhile, the fraction of the stress wave that has passed the first failure
surface continues traveling along the specimen. Because its magnitude is still larger
than the tensile strength of the material, another spalling failure happens. The second
failure surface occurs at 25mm from the right end of the model. After this, the
residual stress wave is not strong enough to fracture the material. The simulation
results of DLSM are compared with the theoretical solutions based on 1D wave
propagation theory [31] and the experimental observations [32] (see Table 4.4). Based
on these results, it can be concluded that DLSM is able to model the dynamic failure
process of brittle materias, e.g., rock and concrete, under dynamic loading.

40.2us 40.8us

42us 45us

first failure surface at 12.0mm from the end

second failure surface at 25.0mm from the end

Figure 4.17. Dynamic spalling predicted by DLSM (incident compressive stress wave of 40MPa).
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Table 4.4. The spalling results predicted by DLSM.

Number of spalling Distance from the specimen end (mm)

Theoretical [31] DLSM Theoretical [31]] DLSM Relative Error

Stress wave | 1 1 24.5 24 2.0%
12.25 12 2.0%
Stresswave | 2 2
245 25 2.0%

4.6 Collision of two bodies

The collision of two bodies made from different materials is selected as another
example to illustrate the ssmulation of dynamic failure using DLSM. A sketch of the
initial configuration for the simulation is shown in Figure 4.18. The smaller body
(called intruder here) strikes the large body with a high velocity. At the beginning of
the simulation, the two bodies are formed using 10x10x10 and 50x50x5
particles respectively. The velocity of the intruder is initidly set to v=100mm/s.
Table 4.5 shows the parameter values for the simulation. The strength of the large
body is set to different values to study the effect of the strength on the collision results.
The elastic parameters are chosen in such away that the two bodies are rather stiff.

Large body :
50mm x50mm x5mm

Small body:

V' 10mm x10mm x10mm

Figure 4.18. Diagram for the collision of two bodies.
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Figure 4.19 shows the results of the ssmulation. The color of each particle represents
its velocity in z-direction. It is found that immediately after impact shock waves start

10.2ms 11.0ms 11.2ms 12.0ms

(a) Large body with strength of 16MPa.

10.2ms 11.0ms 11.2ms

(b) Large body with strength of 0.59M Pa.

10.2ms 11.0ms 11.2ms

(c) Large body with strength of 0.16MPa.

Figure 4.19. DLSM simulation of the dynamic failure process of the large body impacted by the
intruder.
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to spread through the larger body. They first appear on the surface and then propagate
into the internal part of the body. In the first case (see Figure 4.19(a)), the larger body
keeps intact after collision. In the last two cases (Figure 4.19(b) and Figure 4.19(c)),
the larger body is completely destroyed under the impact of the small body. Because
of the simple fracture criterion used in the simulation, the results only qualitatively
demonstrate the collision of solid bodies. More readistic and quantitative simulation
can be accomplished if more advanced micro failure laws are implemented.

Table 4.5. Parameter values for the simulation of the collision problem.

Elastic Modules (GPa) Poisson’sratio  Density (kg/m®)  Strength (MPa)

Small body 120 0.2 7900 30000
Large body 60 0.2 2500 16/0.59/0.16

45 Conclusions

This chapter presents a novel 3D lattice spring model, in which the deformation of
shear springs is calculated by using the local strain instead of the particle
displacement. It has been proven that this novelty makes the model rotationally
invariant and be capable of representing the diversity of Poisson’s ratio. Based on the
Cauchy-born rules, the relationship which bridges the spring parameters and the
elastic constants is derived. Several numerical examples are presented to show that
the proposed model is capable of modeling elasticity, wave propagation and dynamic
failure. For Poisson’ sratio greater than 1/4, the model with negative shear springs still
produces reasonable results for both static and dynamic cases as demonstrated
numerically. The DLSM model has advantages of directly using macroscopic
parameters and allowing general lattice structures to be adopted. The disadvantage of
the proposed model is that a local strain has to be calculated which costs more
computing resources than the classical lattice model does. Generally speaking, like
other discrete models based on the minimum potential energy principle, the model
gives a stiff approximation of the corresponding elastic solution. The proposed model
supplies an aternative numerical tool for studying the microstructure influences on
dynamic fracturing of geo-materials such as rock and concrete. Further developments
of method will be presented in following chapters.
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(C]hlaqpntelr 5

Multi-scale DL SM

In this chapter, a multi-scale lattice spring model is proposed to combine the DLSM
described in Chapter 4 with the NMM. This model is named as multi-scale DLSM
(m-DLSM) which can reduce the computational resources needed for DLSM model
which totally built from particles. The proposed multi-scale model includes
three-layer structures as. the NMM model, the PMM model and the DLSM model. A
Particle based Manifold Method (PMM) is proposed to bridge the DLSM with NMM.
PMM uses a special manifold model, where the physical domain is discretized into
particles. During calculation, the PMM model can be automatically released into
DLSM model. The developed model can be used to study the dynamic failure of
brittle materials, e.g., rock and concrete. Finadly, a few examples are provided to
demonstrate the correctness and feasibility of the developed model.

5.1 Introduction

Multi-scale modeling is regarded as an exciting and promising methodology due to its
ability to solve problems which cannot directly be handled by microscopic methods
for the limitation of computing capacitance [1-3]. For this reason, the macro material
response can be directly obtained based the micro mechanical properties through
multi-scale modeling. This advantage is extremely useful and essential in the study of
material properties based on their microstructure information. It is well known that
classical elasticity theory can only provide an adequate description of macroscopic
mechanical response for most materials. It would be an unsuitable theory when facing
the micro-mechanical response of these materials which are actually heterogeneous at
microscopic level, therefore, the microscopic modeling is necessary [4]. As it is
mentioned above that directly building microscopic model is usually inaccessible due
to the limitation of computing resources, in this case, the multi-scale modeling
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provides a good choice.

The most direct way to build a multi-scale numerical model is to combine two
different scale methods. This methodology has widely been used in the coupling of
MD with continuum mechanics model [5-8]. In order to further reducing the
computing burden, these multi-scale methods also alow the macroscopic model
automatically changed into microscopic model. This kind of implementation is
regarded as the high level multi-scale coupling technique. This kind of multi-scale
models have been developed for fracturing simulation of materials in [9, 10].
Moreover, multiscale modeling is also mathematically needed. It is attributed to the
fact that the computing power is still the main limitation of numerical modeling. From
pure mathematic view, the secular behavior [11] is the most important reason of
performing multiscale analysis. The secular behavior of numerical modeling can be
attributed to the accumulated error of the problem will increase with the scale
decreasing or increasing for a given scale model. For example, when the scale is too
small, the FEM cannot exactly provide correct description of the microscopic
behavior of materials. Thisis also true for the microscopic model, e.g., when the scale
is too large for MD model, it will produce too large accumulated error. From this
point of view, the multiscale modeling is essentially needed for some problems which
inhabit multiscale property, e.g., the volcanic eruptions [3] are regarded as a
multiscale dynamic fracturing propagation problem. Development of multiscale
model is aso promising to solve dynamic fracturing problems of various materials
including rock.

In this chapter, a multi-scale model is developed to couple DLSM [13, 14] and NMM
[15, 16]. The reason of choosing NMM s that it is an advanced FEM and the back
ground mesh used in manifold method is independent to physica model [17].
Meantime, the DLSM is close to FEM due to the DOFs for each particle are same
with that of FEM node. These properties make it very suitable to couple these
different methods. The context of this chapter is organized as following. Firstly, the
elastic dynamic and explicit manifold method will be introduced. Secondly, the
multi-scale Distinct Lattice Spring Model (m-DLSM) will be described in details
including equations of PMM and how to integrate DLSM and NMM. Then, the
proposed model is validated through numerical simulations of two elastic problems,
one wave propagation problem and two dynamic failure problems. Finally, this
chapter ends up with some remarks and conclusions.

90



5.2 Elastic dynamics and numerical manifold method

5.2.1Thebasic of elastic dynamics

In this section, the basic equations for linear elastic dynamics will be briefly
introduced. Consider the elastic body €2 as shown in Figure 5.1. The boundary T
is composed of the traction boundary I', and the displacement boundary I',. The
governing equation of motion, or momentum conservation law, for the solid body
under the Lagrangian frame of referenceis

Ve +b = pl (5.1)
with the boundary condition being

u=tu on I (5.2)

u

cn=t on T (5.3)

t

where V is the gradient operator with respect to the current position x, u isthe
displacement and U is the accelerate, ¢ is the Cauchy stress, p is the mass
density, b is the body force per unit mass, n is the outward normal vector on the
boundary surface in the current configuration, and t and U are the prescribed
traction and displacement on the corresponding boundaries, respectively.

o LT

Figure 5.1. An solid elastic body under Lagrangian frame.
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5.2.2 Explicit numerical manifold method

NMM is a numerical method proposed by Shi [15] to integrate FEM with DDA [17].
It can be regarded as an advanced FEM or PUM based FEM. The relationship
between PUM FEM and NMM s discussed in the work of Kurumatani and Terada
[18]. Basic unit used in NMM is called as manifold element which is made up from
mathematic cover and physical domain (see Figure 5.2). The physical cover is the
intersection of mathematic cover and physical domain. It is equivalent to FEM node
used in classical FEM. Degrees of freedoms are defined in these physical covers to
represent deformation state of their physical domains. The detail of how to construct
these manifold elements can be found in [15]. The manifold element can aso be
simply regarded as a regular FEM with an irregular integration domain. This is the
most distinct feature of NMM, which make the regular mesh can be used to model
irregular domain. NMM has similar properties of meshless methods and meantime
kept some advantages of the classical FEM. It is found that the meshless properties
are extremely useful to realize coupling between the different methods.

WA/

(@) Manifold model in 2D (b) Manifold model in 3D

Figure 5.2. Manifold elementsin NMM.

In following sections, the basic theory of NMM and its explicit version will be
explained. Compared with FEM, approximation function in NMM is given in a
similar way. First, the deformation function is defined in the physical cover as

= ibji (X)’uji (5'4)
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where ¢(x) is the displacement function of the jth physical cover, u; is the general
DOFs of the cover, bji(x) is the basis of the displacement function and n is the
number of DOFs. Findly, the approximation function of the manifold element is
written as

u"(x) :Zqﬁj (x)¢; (x) :Zqﬁj (X)Zbji (X)u; (5.5)

where ¢, is the weight function of the cover and m is the number of physical
covers of the manifold element. The weight functions should satisfy the partition of
unity, namely

36, (x)=1 (56)

The manifold elements are called as three-cover element or eight-cover element in
order to distinguish with the FEM elements. Equation (5.6) can be further written into
amore familiar form as

nxm

u“(x):g‘ N; (X)u, (5.7)

where N, (x) is the shape function of i-th general degree of freedoms, u is the
degree of freedoms defined in i™ cover. Now, the integration equations of NMM on
elastic dynamics can be obtained through weighted residual approach or variation
principle. The system equations of manifold method are obtained through imposing
the boundary conditions into Equation (5.1) in aweak sense as

jgpu*-UdV+L2Vu* :odV+/1Iru u«(u-u)dr (59
:j u*-bdv+j u «tdl’, Yu’ .
Q T,

where u is the displacement field and U is its variation. The third term in the
left-hand side is the penalty term involving in boundary condition (5.2). The A4 isa
large number called as the penalty parameter which istaken as

A= pE (5.9)

where E isthe elastic modules, S is aratio suggested to take from 40 to 100. In
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NMM, the direct boundary condition can be applied directly when the manifold nodes
(physical cover) are exactly placed on the boundaries. In this case, the third term in
the left part of Equation (5.8) can be neglected. From Equation (5.8), we can further
derive the following discretized equation of motion:

Ku'+Mi' =F" (5.10)

where u' is the displacement vector, U' is the accelerate vector and F' is the

external force vectors, respectively. The external force can be written as
Ny Ny
t _ T T%,
F' = ; jge N’bdQ, + ; '[rt NTtdr, (5.11)

The stiffness matrix and mass matrix are evaluated as follows:

Neg

M =3 p,[ NINJdQ (5.12)
e=1 ©
Ny

K=3| BIDBdQ (5.13)
e=1 ¢

where N, and B, are respectively interpolation matrix of displacement and strain,
D is éastic matrix and N, is the number of manifold elements involved in the
NMM model.

The integration domain involved in Equations (5.12) and (5.13) is an irregular domain.
It can be integrated through simplex integration method or simplex gauss integration
method. The details of these integration methods can be found in [15, 16]. In the
original NMM [15], system equations are solved by using an implicit method. In this
chapter, the explicit center difference method will be used to solve Equation (5.10).
The integrate method for explicit NMM iswritten as:

Ut =(F' —=Ku' )M, (5.14)
ut+At/2 — utht/Z + utAt (515)

ut+At — ut + ut+At/2At (516)
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where At is the time step used in the center difference integration and the mass
matrix is assembled in a lumped form. This allows the calculation can be performed
through an element by element way. The main advantage of explicit method is that the
globa stiffness matrix does not need to be assembled explicitly during calculation.
Boundary conditions can also be directly applied to the corresponding manifold nodes.
However, this solution scheme is conditionally stable. To keep the computation stable,
the time step have to be chosen according to the requirement, it should be less than
the time needed for elastic wave to propagate through the smallest element of the
model, thisreads as

L
At = mln(c—] (5.17)

p

where C, isthe P-wave velocity of the model, |, istheith manifold element length
of the model. This requirement is the same as that used in DLSM which is the
microscopic model to be coupled with NMM. In DLSM, the particles and springs
make up a network system which represents the solid model. The equation of motion
of DLSM isjust the same as Equation (5.10), and the used integration method is aso
explicit center difference method (equivalent to the Newton's second law). This
means al elements in the multi-scale model, particles and manifold nodes, can be
treated exactly through single set of motion equations and the force interaction

between NMM and DLSM can be treated directly.

5.3 Multi-scale Distinct L attice Spring Model (m-DLSM)

In order to integrate DLSM model with NMM, interaction between them has to be
treated properly. The basic element of DLSM is particle and that of NMM model is
polyhedral manifold element. Contact detection between these two 3D objects is
difficult to be implemented. Moreover, directly coupling these two models will cause
sudden vibration at their interface and further leads to some unstable solutions. In
order to solve these problems, a method for mixing the NMM with DLSM is proposed.
The method is named as Particle based Manifold Method (PMM), where the physical
domain of manifold element is replaced by the particle based DLSM model and DOFs
of the model are defined in the physical covers as in standard NMM. The PMM
element is a mixture of DLSM and manifold element. By using this element, there is
only sphere to sphere contact detection is required. It is much easy to be implemented.
The PMM model also provides a cushion layer in the multi-scale model, which
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naturaly bridge the DLSM model with the NMM model. Following, the PMM
element and the solving procedure used in the proposed multi-scale model (m-DLSM)
will be presented.

5.3.1 Particle based Manifold Method (PM M) element

In this section, the basic idea of PMM element will be introduced. PMM element is
realized by replacing the physical domain of manifold element by the particle based
DLSM model (see Figure 5.3). The 3D PMM element used in m-DLSM s illustrated
in Figure 5.3. The eight-node FEM element is used as the mathematic element and
DLSM model is used as the physical domain.

Integration domain

i j

Figure 5.3. PMM element in m-DLSM.

As the explicit integration method and lumped mass matrix are used in m-DLSM, the
mass matrix of PMM element is taken as the 1/8 of the DLSM model included in the
element:

1 m
j=

where M™F is the mass matrix of PMM element, m is the number of particles
included in the PMM element and ) is the mass of the particle. The stiffness
matrix of the PMM element has to be obtained from a distinct way. As the
deformation energy of DLSM model is stored on the network of bonds between
particles. The integration domain of PMM element is neither 2D nor 3D. Actualy, as

the discrete natural property of the lattice network, the integration is realized through
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a summarizing operation as

n
KME =3 K} (5.19)
j=1

i
where K™F is the stiffness matrix of PMM element, n; is the number of bonds
included in the PMM element and Kit; is the stiffness matrix contributed by each

lattice bond (apair of normal and shear springs).

First, the stiffness of the bond in local coordinate as follows:

k, 0 0 O
0 0 O
K™ = < (5.20)
: 0 0 k, O
0 0 0 Kk
And the bond deformation is represented as
u™ = (u",ug,us,u3) (5.21)

It should be mention that the shear spring in DLSM model is a vector spring whose
deformation is represented by a vector with three variables. The strain state of the
PMM element isgiven as

£, &y &y exz)T =Bu"* (5.22)

where UMF is the node displacement of PMM element, B'=[Bj] is the strain
interpolation matrix of the mathematic element, which can be obtained as

N, O
o N, O
B 0 0 N, 5.23
TN, N o >
0 SN, 3N,
%Ni,z 0 %N

where N.

i,x?

N,, and N,, are derivatives of the shape functions. The shape
functions N; and their corresponding derivatives are provided in Appendix C.
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Then, the bond deformation vector can be represented by

ubond — L

4x6®

(5.24)

where L 4«6 1S a transformation matrix. Based on Equation (B.13) in Appendix B, L 4xs

is obtained as

n n n

-, ) *Ifn, 0 0 n 0 n

y z
1-n, nn, -nn,

L a6 = TaeQa6 =1 “nn 1-n? -nn 0On 0 n n 0 (52

y X y y 'z

>0 0 n 0 n n
-nn, nn, 1-n,

where |;; is the length of the bond and (ny,ny,n;) is the normal vector of the bond, it is
define as

n=(nnn,) =[S b B (529
where (x,Y,,z) and (X%, Y,,z,) arethecoordinatesfor two particles.
Now, the strain energy of the bond can be written as
I, = 2 (K (LB'u"e)) (LB U™ 5.27
b_E(iJ(u))(u) (6:27)

Finally, the contribution of each bond to the stiffness matrix is obtained from the
energy minimization principle as

2
Kb = {ﬂ} = (|_ B’ )T K2™MLB' (5.28)

" | duay,

5.3.2 Coupling scheme

Figure 5.4 shows the work flow of the coupled calculation cycle in m-DLSM. The
DLSM and NMM computations are performed in parallel. Interactions between them
are finished by the PMM model. Information exchange only happen at the begin and

the end of each cycle. The mapping of unbalance force from particles to PMM
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element computation is realized by using following equation

ME _ LS
F" =N,F; (5.29)
where F"® is the transferred force to the i-th PMM element, N, is the interpolation
matrix of displacement at the linked particle and F;° is the calculated unbalance
force on the particle. After obtaining the unbalance force on particles and manifold
nodes, new positions of these particles and manifold nodes can be obtained by using
the Newton's second law. Then, the displacement of NMM model is mapped to the
particles which fall in the PMM model. The mapping operation is given as

uhsz[Nij ]T The (5.30)
where u;® is the mapped displacement from PMM model to the linked particle and
u'®is displacement vector of the PMM element. The interaction between PMM with
DLSM is redlized through the interaction of the DLSM particle with the PMM
particle. The interaction between PMM and NMM is realized by sharing common

manifold nodes. The PMM model is used as the midst scale layer of the m-DLSM to
realize coupling of the DLSM and the NMM.

The used time step is selected as the minimal value of the time step used for NMM
model and DLSM model. In practical, the time step of DLSM modd is aways
selected due to the size of DLSM particle is surely smaller than the NMM element
size. In order to obtain static solutions, a local damping scheme [18] is used. It can
overcome the difficulties of the velocity-proportional damping. The local damping is
simply written as

S RO =Y R | SR Json s ) 531
where o is the damping constant which is dimensionless and independent of

mechanical properties and boundary conditions. For the dynamic case, the damping
term will be switched off (& =0).
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Figure 5.4. Coupled caculation cyclein m-DLSM.
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5.3.3 Releasing PMM element into DL SM

In this section, we will discuss the technique of automatic releasing of PMM element
into DLSM during calculation. Releasing of particles is treated as a pre-failure
processin m-DLSM. A reduced macroscopic strength criterion is used as the releasing
criteria. When the state of the PMM element satisfies this criteria, the PMM element
is released into DLSM model. In this chapter, a simple maximum strain based criteria
is preliminarily used as the releasing rule. PMM element will be released into DLSM
model when strain state of the PMM element satisfies:

£ > yE, (5.32)

where g is the maximum main strain of the PMM element, ¢ is the ultimate
strain of the model and ¥ is areduction factor which is taken 0.8. When the PMM
element is released, it will be removed from the calculation cycle and new released
particles will take part in the calculation cycle of DLSM model.

5.4 Examples

5.4.1 Simpletensional test

In this section, a pure tensile loading of a bar of 10mmx10mmx20mm is simulated.
The purpose is to test the influence of different coupled models on the simulation
results and to validate the correctness of the proposed method. Four m-DLSM models
are shown in Figure 5.5. The applied boundary force is 1IMPa and the material
properties of the model are selected as. the elastic modulus is 12.5GPa and the
Poisson’sratio is 0.3. The first model isafull DLSM model (see Figure 5.5(a)) which
is made up from particles with diameter of 1mm. The second one is made up from
DLSM model and PMM model with element length of 5mm (see Figure 5.5(b)). The
third one is a model only made up from NMM and DLSM (see Figure 5.5(c)). The
last oneis a three layer model includes NMM model, PMM model and DLSM model
(see Figure 5.5(d)). The simulation results of contour map of the displacement in z
direction (loaded direction) are shown in Figure 5.6 separately.
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X

(c) DLSM & NMM model (d) DLSM & PMM & NMM model

Figure 5.5. Different m-DLSM models for the bar under tensile loading problem.

(a) Full DLSM model

(c) DLSM &NMM model (d) DLSM & PMM & NMM model

Figure 5.6. Contour map of the displacement in z direction for different coupled models.
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It can be seen that the DLSM and NMM cannot work together without using the
PMM element, the DLSM & NMM model cannot predict the correct displacement
distribution (see Figure 5.6(c)). In order to further verify the implementation of the
proposed multi-scale method, displacement in z direction of the top surface are
recorded and compared with analytical solution. The expected displacement in the z
direction of the top surfaceis given as

. (1=v?)PL
U=—"F%¢— (5.33)

where U™ is the expected displacement and L is the effective length of the model.
The effective length and the predicted displacement in z direction of different
m-DLSM models are listed in Table 5.1. It shows that the proposed coupling
procedure and its implementation are correct.

Table 5.1. The predicted z direction displacement by different m-DLSM models.

Full DLSM DLSM & PMM DLSM & NMM DLSM & PMM & NMM

L (mm) 18.00 18.00 19.00 19.00
Predicted (mm) 1.36e-2 1.36e-2 1.32 1.47e-2
Excepted (mm) 1.44e-2 1.44e-2 152e-2 152e-2

Err (%) 5.87 5.87 - 3.28

5.4.2 Uniaxial loading of a plate with a circular hole

A sguare plate containing a central circular hole is selected another example to further

check the ability of m-DLSM on modeling static elastic problems. The dimension of

the plate is 100mmx200mmx10mm and a circle hole with radius of 20mm is placed
in the center of the plane. The used multi-scale DLSM models are shown in Figure
5.7. Two coupled models are used (DLSM & PMM & NMM model (see Figure 5.7(a))
and PMM & NMM model (see Figure 5.7(b))). The applied boundary force at the top
of the plane is IMPa and the bottom boundary is fixed during calculation. Material

properties of the model are taken as: the elastic modulus is 12.5GPa and the Poisson’s
ratio is 0.30.

103



(b) PMM & NMM coupled model

Figure 5.7. Two m-DLSM models for the uniaxia tensile loading of a plate with a circular hole.

The modeling results of contour map of y direction displacement for these two models
are shown in Figure 5.8. The same distribution is obtained for different coupled
models. It reveals that the PMM model can give a good estimation of the DLSM
model for static elastic problems. The displacementsin y direction at detection points,
A(0.5,100.5,5.5), B(10.5,100.5,5.5), C(20.5,100.5,5.5), D(79.5,100.5,5.5),
E(89.5,100.5,5.5) and F(99.5,100.5,5.5), are record and listed in Table 5.2. Similar
results are produced by different models.

5.4.3 Wave propagation through elastic bar

This example is used to show the ability of the m-DLSM modeling of wave
propagation through elastic bar. The m-DLSM models are shown in Figure 5.9. The
model dimension is 20mmx20mmx200mm. The material parameters are taken as: the
elastic modulus is 12.5GPa, the Poisson’s ratio is 0.3 and the density is 2650kg/m®. A
half-cycle sinusoidal velocity wave with 100mm/s amplitude and frequency of
50000Hz is applied at the left boundary. Right boundary of the bar is set to be free and

other four side boundaries are all fixed in their normal direction.
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(b) PMM & NMM model
Figure 5.8. The simulation results of the multi-scale DLSM.

Table 5.2. Displacementsin y direction of the plane predicted by different models.

PointA PointB PointC PointD PointE Point F

DLSM & PMM & NMM (mm) 9.58e-4 9.60e-4 9.62e-4 9.60e-4 9.60e-4 9.58e-4
PMM & NMM (mm) 9.50e-4 952e4 9.53e4 9.53e4 9.52e-4 9.50e-4
Percentage difference (%) 0.84 0.83 0.94 0.73 0.83 0.84

(8) full DLSM model (b) DLSM & PMM model

Figure 5.9. Used m-DLSM models for the wave propagation through elastic bar problem.
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Figure 5.10 and Figure 5.11 show the contour map of the particle velocity in z
direction for the full DLSM model and DLSM & PMM coupled model. The
propagation and reflection of the wave can be observed clearly for these two models.

(a) t=bus (b) t=12ps

(c) t=20us (d) t=30ps

Figure 5.10. The process of wave propagation through elastic bar predicted by full DLSM model.

(a) t=bus . (b) t=12ps

(c) t=20us (d) t=30ps

Figure 5.11. The process of wave propagation through elastic bar predicted by DLSM & PMM model.
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Four detection points, A(5.55.5,0.5),
D(5.5,5.5,199.5), are placed in the bar to record the wave propagated through the
model. The recorded waves at these points for different models are shown in Figure
5.12. The DLSM & PMM model produces dightly different wave forms at some
detection points. The reason is that the PMM element size is larger than the particle
size of DLSM. This will cause some high frequency parts of the wave to be filtered
out inthe DLSM & PMM model. Even so, both the wave form and the amplitude are
in good agreement between two models. This example shows that m-DLSM can well

B(5.5,5.5,50.5),

C(5.5,5.5,150.5) and

predict the process of dynamic loads transmitted through elastic body.
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Figure 5.12. Simulation results of the wave propagation by m-DLSM.
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5.4.4 Progressive failure of a solid specimen with a side notch

A solid specimen with a side notch as shown in Figure 5.13 is simulated by the
m-DLSM. The mechanical constants of the material are elastic modulus 12.5GPa,
Poisson’s ratio 0.3 and density 2650kg/m>. The particle size of the DLSM model is
taken as 1mm and the manifold element length is taken as Smm. The dimension of the
solid specimen is 100mmx200mmx5mm and the dimension of the notch is
20mmx5mmx5mm. The ultimate strain for the PMM element is taken as 4x10™* and
the reduction factor for the releasing criteriais taken 0.8. The ultimate deformation of
the lattice bond in DLSM is given as 5x10“mm. The applied force on the top
boundary is taken as 1M Pa and the bottom boundary is fixed.

X 7 N4
(@) DLSM model ~ (b) NMM model (c) Coupled model

Figure 5.13. The multi-scale model for a solid specimen with a side notch under tensile loading
problem.

During computation, the PMM elements near the notch will be firstly transformed
into DLSM model. Then, the DLSM will be further broken and finally to form a
fracture. Figure 5.14 shows the process of the PMM elements releasing into DLSM
particles. The contour maps of y displacement for six stages are also presented in
Figure 5.15. With regard to the failure patterns obtained, the ssimulation gives a
realistic description of the fracture process of the notched solid specimen under tensile
loading. This example shows the ability of m-DLSM on automatically releasing the
macroscopic model (PMM e ements) to microscopic model (DLSM particles). Thisis
only a simple example to show the ability of the proposed method on modeling crack
propagation problem. In following, the m-DLSM will be used to one example related
to rock dynamics engineering application.
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(a) step=10 (b) step=20 (c) step=30

(d) step=40 (e) step=50 (f) step=60

Figure 5.14. Releasing process of PMM elements of the m-DLSM during cal culation.
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Figure 5.15. Contour map of the y direction displacement at different steps.
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5.45 Dynamic failure of tunnel under blasting loading

As multi-scale model can largely reduce computing time required by micro numerical
model, it is possible to deal some engineering problems which cannot be handled by
the micro model. Following, the blasting wave propagation through rock mass and the
influence of discontinuous on the failure pattern of tunnel under blasting wave will be
simulated by the m-DLSM.

The dynamic failure of tunnel under blasting loading is an important issue for rock
engineering, e.g., the safety of the existing tunnel must be well estimated when a new
adjacent tunnel is under blasting. Field tests are performed to study this kind problems
and reported in [20, 21]. In this section, one example on blasting wave propagation
through tunnel will be modeled by the m-DLSM code. Figure 5.16 shows the
computational model and boundary conditions for the problem. The dimension of the
model is 50mx50mx2m and particle size is 0.0125m. For DLSM model, more than
two million particles are needed to build this computationa model. It means more
than ten millions of bonds information need to be stored, which is surely an
inaccessible problem for the normal PC. However, only about haf million particles
are used for the m-DLSM model (see Figure 5.17). Blasting load is applied at the left

£ £
IH ull
Discontinuity
] ——
£ :+ 60t TNT /—\ p
g
24.5m 8m
g
ST Lom & gl
= =

Fiugre 5.16. Computational model of the tunnel under blasting loading problem.
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(@DLSM model  (b) NMM model (©) m-DLSM model

Figure 5.17. The multi-scale model for the tunnel under blasting loading problem.

of the boundary from 20m to 24m in vertical to simulate an explosion chamber of
4Amx2m. The blasting wave is simplified as a triangular over-pressure history with
two phases. The maximum over-pressure Py IS equal to 30.23MPa, and the duration
of rise phase t, and the total duration t, are 0.5 and 2.5 ms, respectively. The
material properties of the rock are taken as: the elastic modulus is 74GPa, the
Poisson’s ratio is 0.2 and the density is 2650 kg/m?>. The ultimate bond deformation is
taken as 2.5e-5m, which is calculated based on the tensile strength of Bukit Timah
granite. Discontinuity is represented by setting a material layer with weaker elastic
modulus, where the weakness ratio are taken as 1.0 (Model 1), 0.5 (Moded 1),
0.1(Model 111) and 0.01 (Model 1V). The modeling results of Model 11l are shown in
Figure 5.18, in which the left side of the tunnel is broken under blast loading (see
Figure 5.18).

The failure patterns of m-DLSM models with different stiffness of discontinuity are
shown in Figure 5.19. The failure pattern of the tunnel is influenced by the stiffness of
the discontinuity. When the stiffness is decreasing, the damage degree will first
increase and then decrease. Thisis an interesting result and reveals that the damage of
tunnel under dynamic loading can be released through pre-setting some weak
discontinuity/cavern. Due to the weak enough discontinuity leads the spalling be
happen far away from the tunnel (see Figure 8.19 (d)).
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Figure 5.19. Failure modes of different models under blasting loading.

This example proves that the m-DLSM can be used to solve previousy inaccessible
problem for DLSM in a norma PC. However, more complex constitutive model for
bond springs in DLSM and more advanced representation techniques of
discontinuities are needed for further applying m-DLSM on rea engineering
problems.

5.5 Conclusions

This chapter presents a multi-scale lattice spring model, in which DLSM is coupled
with NMM. A three layer structure is used to combine DLSM and NMM. The PMM
is proposed to bridge between DLSM and NMM. PMM element simplify the contact
detection between the particle in DLSM model and NMM model and also serves as
the cushion layer. The proposed multi-scale model can be used to model dynamic
fracturing problems and wave propagation problems. A few examples are provided to
validate the correctness of the proposed coupling procedure. One memory demanding
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problem for DLSM is solved by the m-DLSM on a normal PC. Results show that the
proposed coupling method and implementation are correct.
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(C]hlaplter 6

DL SM modeling dynamic failure of rock
material

In this chapter, capability of DLSM on modeling dynamic failure of rock material is
enhanced and verified. Firstly, advanced micro constitutive laws of bond springs are
developed and implemented into DLSM to consider the complex mechanical behavior
of rock material. Then, influence of the new implemented micro constitutive law on
macro mechanical behavior of DLSM modél is preliminarily studied through uniaxial
tensile and compressive tests. Empirical equations of the relationship between
parameters of the micro constitutive law and macro failure parameters of the material,
e.g., uniaxial tensile strength and fracture energy, are derived. These equations can be
used to determine the micro parameters under given macro failure parameters or predict
the macro mechanical behavior when input micro parameters are known. One problem
of dynamic crack propagation through PMMA plateis modeled by DLSM with the new
developed micro constitutive law. The results are compared with Cohesive FEM
solution. When considering crack bifurcation, the results of DLSM model using arate
independent micro constitutive law produce similar results as that of using a
rate-dependent constitutive law. Following this, the dynamic fracture toughness test on
the Laurentian granite is modeled, where only rate independent constitutive law is
adopted. The modeling results are comparable with the experimental data. It should be
mention that all input micro parameters are directly computed from the developed
empirical equations based on the static macro failure parameters, i.e., tensile strength
and fracture energy, provided in literature. Finally, conclusions on DLSM modeling of
dynamic failure of rock are presented.

6.1 Advanced micro constitutive law for DL SM

Micro constitutive law for bond spring used in Chapter 4 is the simplest brittle linear

one, which is not enough to describe the complex mechanical behavior of rock material.

An advanced micro constitutive law will be developed in this section. The non-linear
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cohesive laws used in FEM [1, 2] and the constitutive law used for contact joints in
DEM [3, 4] can be used asreference in the development of new micro constitutive laws.
However, these constitutive laws used in both FEM and DEM are not suitable to be
implemented directly into DLSM because the stiffness of shear spring is the Poisson’s
ratio dependent and can be negative or zero. That is the reason of why damage based
constitutive laws are used instead. Here, two micro failure modes, tensile failure of the
normal spring and shear failure of the shear spring, are considered. Firstly, consider the
force-deformation relationship of the normal spring satisfying the curve as shown in
Figure 6.1(a), where u, representsthe normal deformation of the bond spring, and «,
isthe ultimate deformation, &, istheratio of the deformation at hardening point to the
ultimate deformation, and ¢, is the ratio of the deformation at softening point to the
ultimate deformation. It can be seen that the curve can fully represent the linear stage,
the hardening stage and the softening stage of the micro normal bond spring. Instead of
directly providing the force displacement relationship, a damage variable function is
defined as:

k(u)
D =1-——-\"n/ 6.1
) =1-= (61

where k, is the initial stiffness and k(u,) is the secant modulus when the bond
deformation is u,. The damage variable is initially equal to zero when the spring is
intact and finally turn into one when the spring is totally broken. The damage variable
function corresponding to Figure 6.1(a) is shown in Figure 6.1(b). Given a damage
variable function, the force-displacement relationship can easily be obtained as

f (un) = (1_ D(un)) kOun (62)

where f(up) is the spring interaction force when the spring deformation is u,. Different
micro constitutive laws can be redlized by developing different damage variable
functions. In this section, displacement is used as the synonyms of deformation. Micro
parameters u,d,,d,, K * are selected to identify the damage variable function for the
normal spring. The K™ isthe ratio of secant modulus at softening point to the initial
stiffness. Damage variable functions are constructed based on these parameters. For
example, atri-linear micro constitutive law for the normal springis given as

N 0 0<a<y,
D(u,)= D’(%J= D'(e) = 1—0{51—(K’ed§2—51)(1—0551)/(52—51) S, <a<6,
’ 1-K'™6, (@=1)/(1-6,) 5,<as<l
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(6.3)

where o isintroduced to simplify the formulation of the equation. Equation (6.3) can be
rewritten into the force-displacement form as

kOun un S é‘lun
KU, —kou &, ) (U, —us 6,
* ed 2 1 1 * *
f= koUn51+( AL )( L )51Un <u <gua (6.4)
uné‘2 - uné‘l
* U* - U * *
K oqU,0, ——" o,u, <u, <u,
U, — un52

where keq=koK"™. Assume ko=1, the force-displacement relationship given by equation
(6.4) is plotted in Figure 6.2. Different constitutive models can be obtained by setting
K" to different values (seeFigure6.2). K" isadimensionless parameter, which can be
regarded as the secant stiffness at the softening point when ko=1. The brittle linear
congtitutive law isthe special case of thetri-linear constitutive law when 6, =6, =1.0
and K™ =0. The widely used bi-linear constitutive law is obtained when &,=1.0
and K™ =0. Using the damage variable function, nonlinear micro constitutive law
has also been developed. An example is given as follows:

0 0<a<é,
D(u,)= D’(U—TJ= D'(a)= 1—aé‘l—ﬂa(K’ed§2—§l)de“d S.<a<é,
1-(1- B)ad, - pS,K™ (a-1)/(1-6,) 6,<a<1

(6.5)

where =03 and d=(a-4,)/(6,-6,) . The corresponding force-displacement

relationship for ko=1 is shown in Figure 6.3.
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Figure 6.1. The force-deformation relationship and the damage variable function for the normal spring.

Asitismentioned before, the shear spring isadilemmafor directly implementing force
based constitutive law into DLSM. Fortunately, this problem no longer exists when the
damage variable function is used. Because shear deformation of the bond can always be
computed and the damage variable still has physical meaning even the stiffness of shear
spring is negative or zero. The used damage variable function and the corresponding
non-dimensional parameters for shear spring are taken from those for normal spring,
but with u, replaced by u_ which is the ultimate shear deformation. The damage
variable function for shear spring is shown in Figure 6.4, which isformally the same as
that for normal spring but in a symmetrized form.
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Figure 6.2. Force-displacement curve of the tri-linear constitutive law under different values of K™
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Figure 6.3. Force-displacement curves of the nonlinear constitutive law under different values of K™,
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Figure 6.4. Damage evol ution function of the shear spring.

Finaly, there are five parameters, u;,u,d,,d,,K™ , for these new developed micro
congtitutive laws for DLSM. The actual damage of bond can be caused by the shear
failure or the tensile failure or the interaction between the two. Therefore, a damage
variable of bond is defined as:

D** = max (D", D°) (6.6)

where D" and D°® are the damage variables for norma spring and shear spring,
respectively. The force displacement-relationship for bond spring is modified
accordingly as

f (u) =(1-D*™ ) ku (6.7)

where Kk represents either the stiffness of normal spring or the stiffness of shear spring.
The proposed constitutive laws can fully consider the non-linear response of bond in
DLSM. The influence of the five parameters of the micro constitutive model on the
fina macro mechanical behavior of the DLSM model will be studied in following
sections.

6.2 Uniaxial tensile and compressive failure of DL SM model

In this section, a preliminary study on failure behavior of DLSM model is performed.
Figure 6.5 shows computational models used for the uniaxial tensile and compressive
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tests. Unlike in experiments, cubic specimen rather than cylindrical one is used. The
reason is that cube is the most ideal basic unit for stress analysis. Moreover, boundary
conditions can easily be applied in numerical modeling for specimen of any shape.
Therefore the cubic specimen is adopted for the study here. The dimension of the
computational model is 20mmx20mmx20mm (see Figure 6.5). The mechanical
properties of the modeled material are as follows: the elastic modulus is 36GPa, the
Poisson’sratio is0.25 and the density is 2450kg/m?>. A velocity of +1mmV/sis applied on
the top and bottom surface to produce a piston-like uniaxia tensile/compressive
loading.

mean particle size=1.00mm

(a) The cubic lattice structure (the | eft is plane view)

mean particle size=1.18mm

(b) The random lattice structure (the left is plane view)

Figure 6.5. Computational modelsto study failure behavior of DLSM under uniaxial tensile/compressive
loading.

In the following, failure behavior of DLSM is studied. Influences of lattice structure
type, the Poisson’s ratio, micro faillure mode and micro constitutive law are
investigated. Details of these considered factors are given below.

e Thelatticetype

Two lattice structures, regular lattice and random lattice, are considered (seen in
Figure 6.5).
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e ThePoisson’'sratio

The Poisson’s ratio influences stiffness of shear spring, thus may influence the
macro tensile behavior of the DLSM model. Here, three representative values,
0.20, 0.25 and 0.30 are considered for the uniaxial tensile test.

e Micro failure mode

Two micro failure modes of bond, tensile failure and shear falure, are
investigated for the uniaxial tensile test.

e Micro constitutive law

It is interesting to see whether macro loading curve of DLSM will have the same
shape as the input micro constitutive law. Some parameters of the used tri-linear
and nonlinear constitutive law are listed in Table 6.1. The other two parameters
are set to u, =le—4mm and u; =2mm respectively for model which only consider
micro tensile failure and U, = 2mm and u_ =1e—4mm for these only considering micro
shear failure.

Table 6.1. Parameters of the used micro constitutive laws.

Index | Micro constitutive law Non-dimensional parameters
s | 6 | K®
C1 Brittle linear - - -
C2 Tri-linear 0.20 0.80 0.10
C3 Tri-linear 0.20 0.80 0.25
c4 Tri-linear 0.20 0.80 0.50
C5 Nonlinear 0.20 0.80 0.10
(6] Nonlinear 0.20 0.80 0.25
c7 Nonlinear 0.20 0.80 0.50

6.2.1 Uniaxial tensiletest of DLSM model

Lattice type

Strain stress curves of DLSM with different lattice structures using the brittle linear
congtitutive law (C1) are shown in Figure 6.6. It is found that the regular lattice model
results in an irregular strain stress curve, whereas smooth curve is obtained for the
random lattice model.
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Figure 6.6. Strain stress curves of DLSM models under uniaxial tensile loading.

Figure 6.7 shows influence of the Poisson’ s ratio on the DLSM results for the uniaxial
tensile test. Different strain stress curves are produced. Difference in tensile strength
caused by the Poisson’sratio is negligible for the regular lattice model, while apparent
for the random lattice model.
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Figure 6.7. Influence of Poisson’sratio on the uniaxial tensile failure of DLSM.

Micro failure mode

The strain stress curve of DLSM considering only the micro shear failure is given in
Figure 6.8. It can be seen that the whole model is not collapse under shear micro
failure, which means the main micro failure mechanism for uniaxial tensile loading
should be the micro tensile failure rather than the micro shear failure. Hence, hereafter,
only the micro tensile failure will be considered.
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Figure 6.8. Uniaxial tensile failure of DLSM when only considering the shear failure of bond.

Micro constitutive law

Strain stress curves of DLSM models with the new developed micro constitutive laws
are shown in Figure 6.9. Curves of the corresponding micro constitutive laws can be
seen in Figure 6.2 and Figure 6.3. It can be observed that the obtained strain stress
curves are not the same as these of the micro constitutive laws. Overall speaking, both
regular and random lattice model produce smooth strain stress curves when the new
developed micro constitutive models are used.

6.2.2 Uniaxial compressive test of DL SM model

The mechanism of compressive failure of rock material is much complex than that of
tensile failure, which involves not only detachment between grains but also dliding of
contact and generation of new contacts. In this section, the uniaxial compressive test
is performed to show the compressive failure behavior of DLSM. Influence of lattice
type and micro constitutive law on the strain stress curve of DLSM is investigated.
Results show that the current DLSM is not suitable for modeling compressive failure
of rock material.
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Figure 6.9. Strain stress curves of DLSM with different micro constitutive laws for the uniaxial tensile loading test.



Lattice type

The strain stress curves for the uniaxial compressive test on DLSM with different
lattice structures are shown in Figure 6.10. It can be seen that irregular strain stress
curve is obtained for the regular lattice model, whereas smooth curve is obtained for
the random lattice model.

x 10°
14
12|
10[
<
S
28 ;
o
g | .
6
af
2
L L I}
0
0 0.5 1 15
Strain x 102
(a) Regular lattice
x 10°

~

ngess (Pa)

0 0.5 1 1.5 2 25 3 35 4 4.5 5
Strain

(b) Random lattice

Figure 6.10. Strain stress curves for the uniaxial compressive test of DLSM with different lattice
structures.
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Micro constitutive law

Influence of micro constitutive law on compressive faillure of DLSM is not as
apparent as that in the uniaxial tensile test in the previous section. Figure 6.11 shows
the strain stress curves of the uniaxia compressive test on DLSM models with
different micro constitutive laws. For the regular lattice model, there are two peaks in
the strain stress curve, whereas the curve is much smooth and only has one peak for
the random lattice model. There is no apparent hardening stage in the strain stress
curve of DLSM under the uniaxial compressive test. This is different from the
uniaxial tensile test.

As a summary, the uniaxia tensile strength and compressive strength of different
DLSM models are listed in Table 6.2. As mentioned before, al models only consider
the micro tensile failure of bond. However, DLSM model can have a compressive
strength, which is different from the RMIB model in Chapter 3. The reason is that the
uniform deformation assumption in RMIB is released in DLSM. Unfortunately, the
ratio of compressive strength to tensile strength for DLSM is much lower than that for
rock materials (typically around 10-12), e.g., it is around seven for the regular lattice
model and three for the random lattice model. For this reason, it can be concluded that
DLSM is only applicable to study the tensile failure of rock material, and further
improvement of DLSM for modeling compressive failure is needed.

Table 6.2. Results of uniaxial tensile and compressive test of DLSM models.

O.tmacro ( Mpa) O_macro ( M Pa) O_énacro /O.tmacro

Index ¢

Regular Random Regular Random Regular Random
Cl1 286 1.99 13.179 5.79 4.61 2.90
c2 079 0.56 6.56 1.69 8.35 3.01
c3 093 0.67 8.19 211 8.82 3.13
c4 141 0.98 8.81 2.93 6.24 2.99
c5 072 054 6.94 1.49 9.59 2.77
c6 093 0.67 7.26 211 7.81 3.13
c7 162 1.14 10.66 3.42 6.56 3.00
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6.2.3 Relationship between micro and macro failure parameters

Two issues will be discussed in this section. The first one is how to predict the macro
strength of DLSM model when its micro constitutive model parameters are known. The
second is how to determine the parametersin the micro constitutive model when macro
material parameters are given. In order to solve these two problems, the relationship
between micro and macro parameters need to be established. In Chapter 3, Equation
(3.24) provides the relationship between the micro tensile parameter u, and macro
tensile strength o,™"°. However, it is not applicable for DLSM as the new developed
micro constitutive laws involved non-linear terms. A simplified concept is used to
derive empirical relationships between microscopic constitutive parameters and
macroscopic failure parameters (see Figure 6.12). Assuming the representative spring
lengthis!|” (equal to the mean particle size) and the representative volumeisacubic box
with length of I”. In this case, the cubic box behaves like the micro spring. Relationship
between the bond strength f and the macroscopic tensile strength o, *° can begiven
as

oo =t (6.8)

|2

Then, bond deformation at failure point can be obtained as

marcol *2

G:%:t (6.9)

~
*

where K’ isthe secant modulus at failure point (see Figure 6.12). Theinitial stiffness of
the representative spring isobtained as El” . For the brittlelinear micro constitutive law
used in Chapter 4, from Equation (6.9) we have (see Figure 6.12)

marool*

* f
k* ( )

Now, all parameters of the brittle linear micro constitutive law for normal spring can be
directly obtained from Equation (6.10). However, for these new devel oped constitutive
laws, there are two possible peak points, i.e., the hardening point and the softening
point. For the hardening point, we have
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u*é‘lz%z (6.11)

For the softening point, we obtain

* f* Gtrmrcol*
u 52 :A—*: red
k K™E

(6.12)

It can be seen that the micro parameters of these new developed constitutive laws
cannot be determined only based on the macroscopic tensile strength. However,
Equations (6.11) and (6.12) can still be used to predict the macro tensile strength of
DLSM model when the micro parameters are known. Figure 6.13 shows the results of
the macro tensile strength obtained by DLSM simulation and these predicted by the
empirical equations. It can be seen that Equations (6.11) and (6.12) provide a
reasonable estimation of the macro tensile strength. Overall speaking, empirical
equations work better for the new developed constitutive laws with random lattice
structure, for which only about 3% percent difference between the smulated result and
the predicted oneis observed for C2 and C5.

f
— ‘ f* __________________ :
. L a
K
G,
£ G, E
- G =_t pe
O-t |*2 f |*2 O u u* U

Figure 6.12. Scheme of the relationship between the micro parameters with macro tensile strength and
macro fracture energy.

The fracture energy Gt is another macro failure parameter related to tensile failure.
Relationship between the micro constitutive parameters and the fracture energy Gis
derived in thefollowing. Asshown in Figure 6.12, the relationship between the fracture
energy of the representative spring G; and the macro fracture energy G can be written
as
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G, =— (6.13)

2

>(>|

where G is the energy needed to break the spring, which equals the area under the
congtitutive curve. For the tri-linear constitutive law, it can be obtained as

G, =2 BN (074(8,-6)(6,+K™6,)+ K (1-6,)8)  (614)

The fracture energy G; of DLSM with the tri-linear micro constitutive law can be
obtained from Equations (6.13) and (6.14) as
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Figure 6.13. Tensile strength predicted from empirical equations and DLSM modeling.
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G, :%KE[IIJ—S] I (6.15)

where % isadimensionless coefficient which reads

K=07+(8,-6,)(6,+K™5,)+K™ (1-6,) 6, (6.16)

With only two empirical equations, it is still not possible to determine al the involved
micro parameters for the tri-linear constitutive law. However, the micro parameters for
the bi-linear case of the tri-linear constitutive law can be determined. In this case
(K™ =0 and &, =1), Equation (6.14) becomes

G, :%EI* (u6,)u, (6.17)

Now, together with Equation (6.11), all micro constitutive parameters, u, and J,, can
be determined uniquely from the macro tensile strength o™ and fracture energy G.
In the following simulations, the tri-linear constitutive law will be used and its
parameters will be determined based on these empirical equations.

6.3 Dynamic crack propagation of PMMA plate

6.3.1 The experimental work

In this section, the experimental work done by Shioya and Zhou [5] on dynamic crack
propagation of pre-strained PMMA strips is modeled by DLSM. The PMMA
rectangular plate was under tension by a universal test machine before crack start to
propagate (see Figure 6.14(a)). A small straight crack is cut by a razor when the
specimen reaching agiven load level. Then, the small crack will propagate dynamically
across the specimen along a straight line. Details on the test setup and the experimental
results and the numerical simulation through cohesive FEM are presented in [6]. In this
section, the test is simulated through DLSM with the tri-linear micro constitutive law.

6.3.2 DL SM modeling
The used DLSM model isshownin Figure 6.14, where length | = 32 mm, height h = 16
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mm, and thicknesst = 1 mm, and a4 mm long edge crack is set along the centerline.
The model is made of 512000 rigid spherical particles with diameter of 0.1mm. Before
crack propagates, the plate is preloaded by a prescribed tensile displacement along its
upper and lower boundaries.

A
Y

(a) Geometry model and boundary condition (b) DLSM model

Figure 6.14. DLSM model of the dynamic cracking test on PMMA plate.

The strain energy (per unit area) stored in the pre-strained plate Wis calcul ated as:

1E@2) 2E°
2 h h

W= (6.18)
where E isthe elastic modulus of the PMM plate, A isthe prescribed displacement |oad
and h is the height of the plate. Crack propagation under six different loadings is
simulated. The prescribed boundary displacement A is chosen to be 0.06 mm (case A),
0.08 mm (case B), 0.10 mm (case C), 0.12 mm (case D), 0.14 mm (case E), and 0.16
mm (case F). According to Equation (6.18), the stored energy W will be 1391 N/m,
2472 N/m, 3863 N/m, 5562 N/m, 7571 N/m, and 9888 N/m, respectively. The initia
strain and stress state of the plate under prescribed tensile displacement is obtained
through a static analysis. Then, the explicit dynamic calculation is performed without
changing the boundary conditions.

The time step in the numerical modeling is selected as 0.01us. Thisvalueis very small
and guarantees numerical stability. The PMMA material parameters are considered as:
density = 1180 kg/m®, Young's modulus E = 3090 MPa, and Poisson’s ratio= 0.35.
According to elastic wave equations [ 7], longitudinal, shear and Rayleigh surface wave
speed are obtained as Cp = 1618 nVs, Cs = 985 nVs, and Cr = 906 nVs, respectively. The
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experimentally obtained limiting velocity, V,, is about 70% of Cg. The tensile strength
o and the material fracture energy G; are taken to be 75.0 MPa and 300 N/m,

respectively. The special bi-linear case of the tri-linear micro constitutive law is used
(see Figure 6.15).
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0 0.05 0.1 0.15 0.2

Displacement

Figure 6.15. The used micro constitutive law in DLSM.

Micro parameters are determined by using Equations (6.11) and (6.17) asu, = 0.08mm,
6,=0.3, 6,=1.0 and K™ =0. DLSM modeling results are presented in Figure 6.16
in terms of the crack tip position versus time. Crack speed of each caseis evaluated by
the average slope of the corresponding curve and is shown in Figure 6.17.
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Figure. 6.16. The crack tip location versus time under different pre-loading cases.
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Figure 6.17. The results of crack velocity predicted by DLSM and cohesive FEM in [6].

It isshown that DLSM produces similar results as these obtained by cohesive FEM [6].
Both cohesive FEM and DLSM fails to predict the correct experimental observation
when rate independent constitutive law is used. In order to obtain the correct dynamic
crack propagation velocity, a full rate-dependent constitutive law developed by
Kazerani and Zhao [8] is implemented into DLSM, where both the spring ultimate
deformation and the spring strength are dependent on the spring deformation rate.
Figure 6.18 shows the results of DLSM with the rate-dependent cohesive law. The
RD-P means partial rate-dependent constitutive law and RD-F stands for full
rate-dependent constitutive law. It turns out that crack velocity predicted by DLSM
with RD-F agree with the experimental data. Detalls of the implemented
rate-dependent model and DLSM modeling results are givenin [9].

No crack branching is permitted in the previous model, the crack only propagatesin a
straight path. In experiments, the crack is allowed to propagate arbitrarily through the
plate and experimental results show that branching fracture is produced for the case of
the highest value of prescribed loading (A= 0.16 mm). DLSM modelling which allow
crack to arbitrarily propagate through the PMMA plate are modeled for Case F by using
the tri-linear micro constitutive law. The used micro parametersarelisted in Table 6.3.
The corresponding curves of the used micro constitutive law are plotted in Figure 6.19
for four different cases, and the areas of these curves are the same which represent the
facture energy of 300N/m. Simulation results are shown in Figure 6.20, where crack
bifurcation is observed like in the experiment.
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Figure 6.18. Results of dynamic crack velocity predicted by DL SM with rate-dependent constitutive law.

Table 6.3. Parameters of the tri-linear micro constitutive law for DLSM modeling of dynamic crack
bifurcation in PMMA plate.

u, (mm) o) 0, K
Cc1 8.00e-2 0.30 0.5 0.43
Cc2 6.79e-2 0.36 0.54 0.67
C3 6.18e-2 0.39 0.69 0.57
ca 5.57e-2 0.44 0.87 0.5
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Figure 6.19. Force displacement curves of the tri-linear micro constitutive law with different parameter
sets.
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Figure 6.20. Fracture pattern of DLSM models under Case F with different micro constitutive parameters
when cracking bifurcation is allowed.

Fracture patterns of these models are different (see Figure 6.20), although these
models have the same fracture energy and tensile strength. The modeling results also
show that crack speed decreases when considering crack branching. Figure 6.21
shows the results of DLSM modeling under different pre-loading cases with the
tri-linear micro congtitutive law (C2 in Table 6.3). Compared with the DLSM
modeling without crack branching, a closer fit with the experimental results is
obtained with crack branching but still using the rate independent micro constitutive
law. In following, the dynamic effect of fracture toughness of the Laurentian granite
will be modeled through DLSM with rate independent tri-linear micro constitutive law.
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Figure 6.21. Crack velocity of DLSM models with rate independent micro constitutive law when
considering crack branching.

6.4 Dynamic fractur e toughnesstest of granite

6.4.1 The experiment

The fracture toughness of rock materia is reported that the static fracture toughnessis
nearly a constant under low loading rate. However, when the loading rate larger than
104M Pa m¥@s?, the fracture toughness increases with the loading ratio [10]. Similar
results are obtained from different experimental tests on rock materials[11, 12]. In this
section, the dynamic fracture toughness test of rock material in [12] is modeled by
DLSM. Figure 6.22 shows the experiment setup and the used specimen. Dynamic
fracture toughness of the Laurentian granite under different loading rates is obtained
through a semi-circular bend (SCB) specimen under the split Hopkinson pressure bar
(SHPB) system. The mechanical properties and microstructure information of
Laurentian granite can be found in [13, 14].
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Figure 6.22. Scheme of experimental setup of dynamic fracture toughness test through semi-circular
bend (SCB) sample under the split Hopkinson pressure bar (SHPB) system.

6.4.2 DL SM modeling

The geometry model, boundary conditions and the used DLSM model of the SCB
dynamic fracture toughness test are shown in Figure 6.23. Dimension of the model is
exactly the same as that of the specimen used in the experiment, i.e., 2R =40 mm, B =
16 mm, S = 20.1 mm and a =4 mm. The particle sizeistaken as 0.5mm, which isthe
mean grain size of Laurentian granite. The whole 3D model is built from 79,872
particles.

20.1mm

Figure 6.23. DLSM model of the SCB dynamic fracture toughness test.

A velocity is applied at the left surface to simulate the load of SHPB test [15], whichis
written as

vt/t t<t
v(t):{ dv/ °t>t° (6.19)
d 0

where v, isthe applied dynamic velocity (mm/s), t, isthe arisetime for reaching the
applied velocity which is taken as 20us for all simulations. At the beginning, the
applied velocity is slowly increased to the given level, which hel ps the specimen to get
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stress equilibrium. Thistime is taken to be five or more times of that needed for wave
transmission through the given specimen. The material parameters of Laurentian
granite are density = 2630 kg/m®, the Young's modulus E = 92GPa, and the Poisson
ratio= 0.21. The static tensile strength and mode-I fracture toughness are taken to be
13.2MPa and 1.52M Paxm®?, respectively. The fracture energy is calculated from the
eguation provided in [16], whichis

2
G, :K—E'C: 25113 N/m (6.20)

Three groups of DLSM model are used to model the SCB dynamic fracture toughness
test. Each group includes five models with different loading velocities.

e Group A, named as DLSM _I. The used micro constitutive law is the brittle
elastic one. From Equation (6.11), the failure parameter u, is calculated as
7.174e-5 mm.

e Group B, DLSM _II. The used micro constitutive law is the specia case of the
tri-linear constitutive law. Used parameters are calculated asu; = 0.0038mm,
5,=0.0189, 8,=1.0 and K™ =0.

e Group C, DLSM _III. It uses the same micro constitutive law as Group B, and
additionally considers dynamic frictional force from the loading surfaces.

The frictional boundary condition is simply considered as

\'
f =—2s(u,f 6.21
S |VS|(ud n) ( )

where fs is the dynamic frication force applied on the boundary particle, vs is the
velocity in direction parallel to the loading surface and ugis the dynamic frication ratio
between rock and steel (it is taken as 0.168, which is the value reported in [17] as the
mean dynamic fraction ratio between concrete and steel), and f, is the normal
component of the force acting on the particle. The data of force at loading surface are
recorded during computing. The stress intensive factor is obtained as[12]:
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K, (1) =$-Y(gj (6.22)

where P(t) is the time-varying loading force. B (m), R (m), Sm) and a (m) are the
height of the specimen, width of the specimen and depth of the crack. Y(a/R) is a
dimensionless geometry factor which istaken 0.086 in [12] for the used specimen. The
loading time curve and fracture pattern of the DLSM model in Group C with the
loading velocity of 200mm/s are shown in Figure 6.24. It can be seen that the fracture
begins at the crack tip, then propagates straightly and finally the specimen is broken
into two pieces as observed in experiment. The dynamic fracturetoughness K, canbe
obtained as the peak value of the loading curve. The average loading rate is determined
as

Kig

K, =
Id td

(6.23)

where ty isthetime at which K, (t) = K}, . The simulation results of different DLSM
groups are listed in Tables 6.4 - 6.6.
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Figure 6.24. Loading curve of DLSM model for the SCB dynamic fracture toughness test.
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Table 6.4. Dynamic fracture toughness of DLSM_1.

va(mms) t, (u9 K, (GPam®/9 K (MPam’®

200 36.00 18.05 0.65
300 40.50 31.02 1.26
400 35.50 41.23 1.46
800 31.00 51.62 1.60
1000 27.00 63.83 172

Table 6.5. Dynamic fracture toughness of DLSM_II.

va(mms) t, (u9 K, (GPam™®/9 K, (MPam’®

200 67.00 28.36 1.90
300 52.00 43.95 2.28
400 45.50 55.01 2.50
800 40.00 68.68 2.75
1000 38.50 76.92 2.96

Table 6.6. Dynamic fracture toughness of DLSM 1.

va(mms) t, (u9 K, (GPam'®/9 K, (MPam’®

200 84.50 35.18 2.97
300 62.50 55.67 3.48
400 53.50 74.08 3.96
800 52.00 82.78 4.30
1000 50.00 92.02 4.60

Figure 6.25 summarizes the DLSM modeling results of different conditions and the
experimental data reported in [12]. DLSM modeling results are in agreement with the
experimental data. It should be mention that no rate dependent constitutive law is used.
All used parameters are obtained directly from the static failure parameters of the
Laurentian granite [13, 14]. The modeling results aso show that the friction force
between specimen and loading surface is an important factor and should be considered
carefully in the SCB dynamic fracture toughness test.
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Figure 6.25. DLSM modeling results of the SCB dynamic fracture toughness test and the
corresponding experimental resultsin [12].

6.5 Conclusions

In this chapter, the ability of DLSM on modeling dynamic fracturing of rock material is
enhanced and validated. New micro constitutive laws, which include linear, hardening
and softening stage, are developed and implemented into DLSM. The macro failure
behavior of DLSM model is studied through the uniaxial tensile and compressive test.
Empirical equations are derived to link the micro constitutive parameters with the
macro failure constants of materia, i.e., tensile strength and fracture energy. Dynamic
crack propagation of PMMA plateis modeled by DLSM. Theresults are compared with
cohesive FEM results and experimental data. Crack branching observed in experiment
isreproduced by DLSM. The crack velocity is reproduced by using a rate independent
model and considering crack branching. Then, the dynamic effect of fracture toughness
of Laurentian granite is simulated through DLSM. Modeling results are in agreement
with the experimenta results. All used micro constitutive parameters are obtained
based on the proposed empirical equations and the macro static parameters reported in
literatures. Overall speaking, the ability of DLSM on modeling dynamic failure
problems is enhanced through the developed micro constitutive law in this chapter.
Another important issue in rock dynamics, wave propagation, will be investigated by
DLSM in the next chapter.
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DL SM modeling of wave propagation through
rock mass

Extensions and verifications on DLSM modeling of wave propagation problems are
presented in this chapter. A non-reflection boundary condition based viscous element
method is implemented into DLSM. The non-reflection boudary condtion is verfied
through 1D and 2D wave propagation problems and the results indicate that waves
can pass through the boundary without reflections. The influence of particle size on
wave propagation is investaged by comparing results of DLSM models with different
mesh ratio (Ir) and these obtained from corresponding analytical solutions. Suggested
Ir are provided for modeling P-wave and S-wave propagation in DLSM. Weak
material layer method and virtual joint plane method are developed to model
discontinuity in DLSM. Incident P-wave and S-wave propagation through single
discontinuty are modeled by these two methods and the results are compared with the
analytical solutions. It shows that the virtual joint plane method is better than the
weak material layer method. Finaly, some remarks on DLSM modeling wave
propagation problems are given in the conclusoin part.

7.1 Non-r eflection boundary condition in DL SM

7.1.1 Implementation

The finite boundary of computational model causes elastic wave to be reflected and
mixed with the original wave. This leads analysis of the numerica modeling results
much difficult. Moreover, many wave propagation problems are treated in infinite
domain. It is impossible to build an infinite model in most numerica methods. In
order to solve these problems, an artificial boundary condition which can simulate a
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computational model without any finite boundary is needed. This kind of boundary
condition is called as non-reflection boundary condition. It can eliminate the spurious
reflections induced by the finite boundary. Numbers of non-reflection boundary
conditions had been developed in the past years. For example, vicous boundary
element [1], strip element [2] and infinite element [3] are implemented into FEM to
realize the function of non-reflection boundary. These techniques used in FEM can
also be implemented into other numerical methods, e.g., DEM and DDA [4,5]. The
viscous element method proposed by Lysmer and Kuhlemeyer [1] is the oldest and
simplest non-reflection boundary condition and has been implemented into different
numerical methods, e.g., DDA and DEM. In this section, the viscous element method
will be implemented into DLSM. Figure 7.1 illustrates the imposing of viscous
element based non-reflection boundary condition into DLSM. Three dashpots are
placed at particles on the artificial boundary plane. Reflected wave is minimized by
imposing these damping dashpots. The mechanical properties of these dashpots can be
determined through the material properties of the linked particle.

Figure 7.1. Implementation of non-reflection boundary condition in DLSM.

The normal and shear viscous tractions are given as
t,=—pAC,V, (7.2)

t,=-pACV,, t,=—pAC.V,, (7.2)

where p isthe material density of the linked particle, A is the equivalent area (given
as V?® and V is the volume of the particle), v, is the normal components of the
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velocity of the particle, v, and v, are the shear components of the velocity, C and
C, arethe P-wave and S-wave velocities, which are given by

C,= [K+4G/3 ¢ _ F (7.3)
p p

where K and G are the bulk and shear elastic modulus of the linked particle. This
viscous element based non-reflection boundary condition is implemented into DLSM
by adding Equations (7.1) and (7.2) into the force calculation procedure of DLSM
(see Figure 4.1(b)). The viscous element based non-reflection boundary condition
(VBC) has been widely used in many engineering applications due to its convenience
of implementation and employ [5, 6], athough it has been reported not effective for
dispersive lamb waves. In following, the implemented viscous non-reflection
boundary condition of DLSM is verified through both 1D and 2D wave propagation
problems.

7.1.2 Verifications
Example A

The DLSM model used in this section is shown in Figure 7.2. A three dimensional
model of 70mmx140mmx5mm is built, the diameter of spherical particlesis 0.5mm.
The used material parameters are elastic modulus 27.878GPa, Poisson’s ratio 0.298
and the density 2120kg/m?, which are typical parameters for mortar. A half sinusoidal
velocity wave is applied at the top surface of the model. Two lines of detection points
are placed on the specimen to record the velocity waves propagated through the
model (see Figure 7.2(a)).

Different types of boundary conditions are applied on the DLSM model to study
influence of viscous non-reflection boundary condition on the wave propagation. The
first one is only to apply velocity wave on the top surface and let all left surface be
free. It is named as full free boundary condition. The modeling results are shown in
Figure 7.3, where reflected wave can be clearly observed but wave forms of same
detection line are different. This means 1D wave propagation theory is not strictly
applicable for wave propagation through 3D plate problem under such kind of
boundary condition. Figure 7.4 shows the results when non-reflection boundary
condition is additionally applied on the bottom surface (named as VBC boundary
condition). It can be seen that the reflected wave is largely reduced. However,
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fluctuations among different points of same detection line are till exist (Figure 7.4).
Modeling results will exactly satisfy the 1D wave propagation theory when the side
surfaces are fixed in their normal direction (named as fixed VBC condition). The
DLSM modeling results under fixed VBC condition is shown in Figure 7.5.

70mmx140mmx5mm
particle size 0.5mm

A
(y=104.75,2=2.25)

B
10 2030405060  (y=0,25,2=2.25)

X

(a) Plane view (b) DLSM model

Figure 7.2. Computational model of modeling wave propagation through 3D plate.
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Figure 7.3. Waves predicted by DLSM under full free boundary condition.

This example indicates that the proposed non-reflection boundary condition in DLSM
is successful for one dimensional wave propagation. Modeling results also reveal that
the fixing of the normal direction of side surfaces is necessary to reproduce one
dimensional wave propagation in 3D model (see Figure 7.6). It means that the
influence of side surface boundary condition must be considered carefully for
experimental facilities which based on 1-D wave propagation theory, e.g., the split
Hopkinson pressure bar (SHPB) [7].
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Figure 7.5. Waves predicted by DLSM under fixed VBC boundary condition.

(a) Fixed side boundary condition

(b) Free side boundary condition

Figure 7.6. Results of shock wave propagation through rectangle bar under different side surface
boundary conditions.
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Example B

Blasting wave propagation through rock is modeled by DLSM to test the ability of
implemented viscous non-reflection boundary on modeling 2D wave propagation
problems. This example tries to model the blasting wave propagation through rock
cavern. The corresponding field test of an underground explosion is reported in [8].
The computational model with dimension of 80mx60mx5m is constructed, where an
explosion chamber of 4mx2m is excavated (seen in Figure 7.7). The used particle
size is 0.5m and a total of 191,680 particles are used to build the model. In order to
simulate a plane strain boundary condition, two z-direction surfaces are fixed in their
normal direction. The mechanical properties of rock material are the elastic modulus
74.0GPa, the Poisson’s ratio 0.25 and the density 2650kg/m*, which are typical
mechanical parameters of Bukit Timah granite in the field test. A triangular over-
pressure history with two phases (see Figure 7.8) is used to represent the blasting
wave of effective TNT charge weight of 606kg with a loading density of 10kg/m°.
The maximum over-pressure P 1S equal to 30.23MPa, the duration of rise phase t,
and the total duration t, are 0.5 and 2.5 ms, respectively. These parameters of
triangular over-pressure history are calculated by empirical equations provided in [6].
DLSM modeling results of the blasting wave propagation through rock problem are
given in Figure 7.9. The blast wave can propagate through the boundary without
reflections. This implies the implemented non-reflection boundary condition is
effective for 2-D case.
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Figure 7.7. Computational model of blasting wave propagation through rock cavern.
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Figure 7.8. Triangle pressure wave to represent blasting loading.
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Figure 7.9. The process of blasting wave propagation through rock cavern predicted by DLSM.
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The blasting waves at different record points are shown in Figure 7.10 (a). It can be
seen that only dlight reflection waves are observed. The velocity history predicted by
DLSM model is compared with the test data at 8m above the detonation (see Figure
7.10(b)). The agreement of DLSM modeling and field test is similar with the results
of FEM reported in [6]. This proves again the implemented non-reflection boundary
condition in DLSM is successful. In following, the implemented non-reflection
boundary condition is used for all the examples.
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Figure 7.10. The velocity histories predicted by DLSM and field test.
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7.2 Influence of particle size on wave propagation

Influence of particle size on the numerical accuarcy of DLSM modeling of wave
propagation problems is studied in this section. Similar works have been performed
for some mesh based methods, e.g., the mesh size influence of UDEC on wave
propagatoin is studied in [9,10]. A term called mesh ratio (Ir) (ratio of the mesh size
to the wavelength of input wave) is used as the control paramter. In order to keep
consistent with previous studies same term is used, instead of the ratio of the particle
size to the wave length. In this section, influence of the Ir on DLSM modeling of 1D
and 2D wave propagation problems are investaged. The main objective is to provide
suggested Ir for further study on P-wave and S-wave propagation through jointed rock
mass.

7.2.1 Influence of mesh ratio on 1D wave propagation

A planer elastic wave propagates through a continuous, homogeneous, isotropic and
perfectly elastic medium can be taken as an idea example for verifying the the
numerical accuracy of wave representation in DLSM. In this section, modelling of
one-dimensional P-wave and S-wave propagation in a half-space with continuous,
homogeneous, isotropic and linear elastic material are carried out by DLSM. The
purpose is to select approximate particle size for DLSM modeling of one dimensional
P-wave/S-wave propagation problems. The used DLSM models are shown in Figure
7.11. The dimension of the used model is the same with that of in Figure 7.2.

The basic properties of the material are follows: density 2120kg/m?, elastic modulus
27.878GPa, Poisson's ratio 0.298, shear wave propagation veloicty C, 2250m/s, and
compressional wave propagation velocity C, 4200m/s. A one-cycle sinusoidal wave
with a amplitude of 100mm/s is normally or tangentialy applied to the top boundary
and propagates along the y-direction through the model. Seven measurement points
are positioned in the specimen to record time histories of the particle velocities (see
Figure 7.11). For P-wave, the left and right side boundaries are fixed in their x-
direction. The wave frequencies of the P-wave are taken different values as 0.1MHz,
0.2MHz, 0.5MHz, 1.0MHz and 2.0MHz to produce different Ir as 1/82, 1/42, 1/17,
1/8 and 1/4. The percentage error of DLSM on modeling the amplitude of P-wave is
compared with the input amplitude and used as the index to represent the accuracy of
the numerical results. The results of 1D P-wave propagatoin are shown in Figure 7.12.
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It shows that the percentage error decrease with particle size and increase with the
distance from wave source. The relationship between Ir and the average percentage
error of modeling P-wave propagation is shown in Figure 7.13. It can be seen that the
percentage error will be less than 5% when the Ir is small than 1/41. In order to

S-wave

A (y=130.25)
B (y=110.25)
C (y=90.25)
D (y=70.25)
E (y=50.25)
F (y=30.25)
G (y=10.25)

z Non-reflection boundary Non-reflection boundary

Figure 7.11. DLSM models for one-dimensional P-wave and S-wave propagation.
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Figure 7.12. Percentage error of wave amplitudes of DLSM modeling of P-wave propagation with
different I[r models.
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consider the influence of the distance and the wave frequency, normalized distance
(ratio of the distance from wave source to the wave length) is used as the space
control paramter. Relationship between percentage error and normalized distance
under Ir of 1/17, 1/41 and 1/82 are shown in Figures 7.14, Figure 7.15 and Figure 7.16.
It can be seen that the increment percentage error of the wave propagate through one
wave length distance for DLSM model with Ir=1/17 is 1.24% and these of Ir=1/41 and
Ir=1/82 are 0.99% and 0.90%, respectively. Therefore, the suggested Ir for DLSM
modeling of 1D P-waveisgiven as 1/41.
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Figure 7.13. The relationship bewteen average percentage error and Ir of DLSM modeling P-wave
propagation problem.
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Figure 7.14. The relationship bewteen average percentage error and normalized distance of DLSM
modeling P-wave propagation problem with Ir of 1/17.
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Figure 7.15. The relationship bewteen average percentage error and normalized distance of DLSM
modeling of P-wave propagation problem with Ir of 1/41.
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Figure 7.16. The relationship bewteen average percentage error and normalized distance of DLSM
modeling of P-wave propagation problem with Ir of 1/82.

For S-wave, the wave frequency are selected as 0.2MHz, 0.1 MHz, 0.05MHz and
0.025MHz. The crrosponding Ir are 1/22, 1/45, 1/90 and 1/180. The DLSM modeling
results are shown in Figure 7.17. Here, the same trendency as that of DLSM modeling
of P-wave propagaton is obtained. The relationship between Ir and the average
percentage error of DLSM modeling of S-wave is given in Figure 7.18. Moreover,
relationships between percentage error and normalized distance under Ir of 1/45, 1/90
and 1/180 are provided in Figure 7.19, Figure 7.20 and Figure 7.21. From these
results, the suggested Ir of DLSM modeling of S-wave pragation is given as 1/90. The
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recorded waves at points A and G in the DLSM model with [r=1/90 and Ir=1/180 are
shown in Figure 7.22, it can be seen that the transmitted wave still has some
difference with the orignal input wave. To obtian a precise wave form, alr of 1/180
IS suggested.
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Figure 7.17. Percentage error of wave amplitudes of DLSM modeling S-wave propagation using
different Ir models.
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Figure 7.18. The relationship bewteen average percentage error and Ir of DLSM modeling S-wave
propagation problem.
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Figure 7.19. The relationship bewteen average percentage error and normalized distance of DLSM
modeling of S-wave propagation with Ir of 1/45.
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Figure 7.20. The relationship bewteen average percentage error and normalized distance of DLSM
modeling of S-wave propagation with Ir of 1/90.
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Figure 7.21. The relationship bewteen average percentage error and normalized distance of DLSM
modeling of S-wave propagation problem with Ir of 1/180.
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Figure 7.22. Recorded waves at detection points A and G and corresponding amplitude spectra of

(b) Ir

DLSM models with Ir of 1/90 and 1/180.

7.2.2 Influence of mesh ratio on 2D wave propagation

In this section, influence of Ir on 2D wave propagation is studied. The DLSM

modeling results are compared with the analytical solution of stress wave propagation
through a cylindrical cavity (see Figure 7.23). A uniform harmonic loading,
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o,(r=a)= —poe““", is applied on the cylindrical surface. The governing equations
of this problem iswritten as

_ 10
C; ot?

V2D (7.4)

where @ isthe potentia function, C isthe p-wave velocity, t istime.

it O-re

o, (r=a)=—p,€
/ o
’ :
!
/

7

SNV~

Figure 7.23. The problem of stress wave propagation from a cylindrical cavity.

The analytical solution of the radial displacement, velocity and stress in the medium
aregivenas|[11, 12]

o, :—,u[kzﬂzd)+§(ij—?j (7.5)
_ dd _ ﬂ ot | (A)
u=— =N (pa) P.€ [ H, (ﬂr)] (7.6)
_du__ iof et [ g0
V= IN (G pe | H (Br) | (7.7)

where a is the radius of the cavity, k* and 3* are deduced parameters which are
written as

A+2u
cz'” U

(7.8)
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where ﬂzL and u

(1+v)(1-2v)

T2y

The potential function and its derivative of this problem are given as

@(r0) =g (e (A1) (7.9
cp(d rt,t) -— fﬂa) by [~HY (Br)] (7.10)

N(a) isgiven as
N(Ba)=k*B*HY ( ﬂa)—% HY (Ba) (7.12)

where H(" (x) is Hankel function and its explicit expression can be found in [13].
The wave velocity attenuation ratio along the radial direction is obtained as

Ar)=—-2 (7.12)

Here, the wave attenuation ratio is used as the index to compare DLSM modeling
results and the analytical ones. Figure 7.24 shows the DLSM used to model the stress
wave propagation through cylindrical cavity problem. A cavity with aradius of 10mm
exists in an infinite domain. A quarter symmetrical model with a dimension of
100mmx100mmx5mm is used. The particle size is 0.5mm and a total of 396,840
particles are used to build the model. The top and right boundaries are non-reflection
boundaries, while the left and the lower boundaries are symmetrical boundaries. A
compressional harmonic velocity wave with amplitude of 100mm/s is applied at the
boundary of the cavity. The wave frequencies are taken as 0.1MHz and 0.2 MHz to
represent Ir of 1/41 and 1/17, respectively. The mechanical parameters are taken as.
elastic modulus is 27.878GPa, Poisson’ s ratio is 0.298 and the density is 2120kg/m?>.

In order to quantify the DLSM results, the error for detection point is given as

|Erri | _ | A(DLSM) — A(analylical) |><100% (7.13)

(analytical )
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where AjpLsv) is the attenuation value of the wave at ith monitoring point predicted by
DLSM and Ajanayticaly iS the corresponding value of the analytical solution. The results
of DLSM modeling and analytical solution are shown in Figure 7.25 and Figure 7.26.

100mm

=

Viscous boundary -[[

Symmetrical boundary

100mm

DLSM particle

Detection points

Figure 7.24. The used DLSM computational model of the stress wave propagation through cylindrical
cavity problem.
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Figure 7.25. The DLSM modeling results under Ir of 1/17 and analytical solution of the wave
propagation through cylindrical cavity problem.
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Figure 7.26. The DLSM modeling results under Ir of 1/41 and analytical solution of the wave
propagation through cylindrical cavity problem.

The average error is 10.86% for the DLSM model with Ir of 1/17 and 1.02% for the Ir
of 1/41. In this sense, the suggested Ir can also be taken 1/41 for 2D P-wave
propagation problems. The suggested Ir in DLSM is smaller than that in UDEC, e.g.,
the Ir of 1/12 is suggested for UDEC modeling of P-wave propagation in [14]. One of
the reasons is that the definination of mesh size and particle sizein UDEC and DLSM
(see Figure 7.27) are different. One single element in UDEC includes four sub-
triangle elements. In this sense, the requirment in UDEC is actually Ir=1/24. For S
wave propagation problem, a strict requirment is required in DLSM (Ir=1/90), while
UDEC can still use Ir=/24 (the actual ratio). It can be concluded that a more strict
requirement on particle size is needed for DLSM to model wave propagation than
mesh based code UDEC.

7.3 Wave propagation through discontinuity in DL SM

It is well known that rock mass should be treated as discontinuous when joints
existed. And some studies show that existing discontinuities in rock masses may play
a dominant role in stress wave attenuation. There are three methodologies, analytical
solutions, laboratory/field experiments and numerical modeling, for the study of stress
wave propagation in discontinuous medium. The analytical solution is economic,
precise and fast on computing. However, the analytical solution of wave propagation
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Figure 7.27. Difference between definations of the meshsize in UDEC and the particle sizein DLSM.

is only available for discontinuous media under simple geometry, e.g., the analytical
solution of incident wave propagates in direction paralel to fractures without
considering multiple reflections were studied by Nihel et a. [15] and Nakagawa et al.
[16] and considering multiple reflections in [10]. Experiments and field tests are the
physical results and can be used to validate the analytical solution. For example,
laboratory experiments conducted by Hopkins et al [17] and Zhao et a. [18] verified
that the simplified analytical model of wave propagation. However, performing
experimental/field tests are very expensive and the medium condition is
uncontrollable. Fortunately, numerical modeling provides useful aterative tool. For
example, the DEM code UDEC was used to simulate shock wave propagation in
across discontinuous media [4, 6, 14]. As a new developed numerical code for rock
dynamics, DLSM should have the ability to model discontinuity. In this section, two
methods are proposed to enhance this ability of DLSM. These two methods are both
implemented into DLSM code and verfied by comparing DLSM modeling restuls of
P-wave and S-wave propagation through single discontinuity with analytical solutions.

7.3.1 Represent discontinuity in DLSM

Weak material layer method

The most ssimple way to represent a discontinuty is to treat it as a thin layer of
material with weak mechanical properties as shown in Figure 7.28. This method is
easy to be implemented into the DLSM code. Different joint pattern models can aso
easy to be generated (seen Figure 7.28). There is no need to change the orignal DLSM
code but only afew modifications on the pre-processor. The stiffness paramters of the
discontinuty represented through this method are given as
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Kk =—4= (7.14)

k, =—% = (7.15)

where d is the thickness of the weak material layer.

|
Discontinuity \

Discontinuity: Material B E,V ‘

Figure 7.28. The weak material layer method used in DLSM to represent discontinuity.

Virtual joint plane method

Theidea of virtua joint plane method is original from the idea of smooth-joint contact
model [19]. The work principle of smooth-joint contact model is shown in Figure 7.29.
The relative displacement increment between the two particles is decomposed into
components normal and tangential to the smooth joint surface and the force-
displacement law is operated under the smooth joint coordinate.

physical analog

jount
smooth-joint contact

surface 1

Figure 7.29. The smooth joint contact model [19].
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A similar ideais proposed in DLSM to represent discontinuty. The principle is shown
in Figure 7.30. A virtua joint plane is inserted into the DLSM model. When a spring
is cut by the virtual joint plane, its paramters will be modified accroding the following
rules:

a) Change the direction of the origina spring into the normal vector of the
virtual joint plane.

b) Replace stiffnesses of the bond spring as:

| KA
KIAI®
koot = —=— 7.17
s 2n™" (7.17)

where k™ and k> are the normal and shear stiffness of the bond, k! and k! are
the inputted joint stiffness parameters for the discontinuity, A is the area of the joint
plane and |” is the mapped bond length on the joint plane normal direction, n®" is the
number of bonds cut by the plane. Implementation of virtual joint plane is more
complex than that of the weak material layer method as modifications of the
caculation procedure of DLSM are needed. These two methods are implemented into
the DLSM code and will be verfied in following section.

Virtual joint plane

Figure 7.30. The virtua joint plane method used in DLSM to represent discontinuty.
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7.3.2 Verifications

Analytical solution

The theoretical expression of transmission coefficient for normally incident harmonic
P-wave/S-wave across a single linearly deformable fracture in an identical rock
materia isgiven as[15,16]:

4(k/za))2

T|=
i 1+ 4(k/ z0)*

(7.18)

where |T1| is the transmission coefficient across a single fracture, k is the normal/shear
fracture stiffness, wis the angular frequency of the harmonic wave, and z is the P-
wave/S-wave impedance, which is equal to product of P-wave/S-wave velocity and
rock density. In order to obtain the analytical solution of half-cycle sinusoidal wave
across a single fracture, the incident wave is first transformed into a sum of series of
harmonic waves in frequency domain by Fast Fourier Transform (FFT). Transmitted
waves of al harmonic components across single discontinuity are obtained from
Equation (7.18). Then, the final transmitted wave can be reproduced through an
Inverse Fast Fourier Transform (IFFT) of these transmitted harmonic waves.

DLSM modeling

The used DLSM mode is shown in Figure 7.31. The dimension of the moddl is
70mmx140mmx5mm and the used particle size is 0.5mm. The material parameters
are elastic modulus 27.878GPa, Poisson’s ratio 0.298 and the density 2120kg/m®. A
half sinusoidal velocity P-wave/S-wave with frequency of 20 kHz is applied at the top
boundary of the model. The Ir is 1/420 for P-wave propagation problem and 1/220 for
S-wave case. From the results obtained from the last section, it can be concluded that
the particle size will only induce very little numerical error in the following
simulations.
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Figure 7.31. The specification of the DLSM model for P-wave/S-wave incidence.

Firstly, the weak material layer method is used to represent the discontinuity. The
material properties of the weak material layer are taken as a small ratio of the original
inputted parameters. Here, thisratio is taken as 0.005, 0.01, 0.02, 0.05, 0.08, 0.1, 0.3,
and 0.5 to produce different normal and shear stiffness. The modeling results of the
weak material layer method are shown in Figure 7.32. It points out that the difference
between analytical solution and DLSM modeling is apparent. In order to provide
guantity comparison, the percentage errors between numerical and analytical solutions
are listed in Table 7.1. It can be seen that the error decreases with increasing of the
joint stiffness. The maximum error of weak material layer method is about 9% on
modeling P-wave and 18% for S-wave. So this method is not a good solution for
guantitative analysis of wave propagation through discontinuities.

Figure 7.33 shows the results of virtua joint plane method. It can be seen that better
agreements are obtained. The percentage errors of the virtua joint plane method
based DLSM on modeling P-wave and S-wave propagation are given in Table 7.2.
The maximum error for P-wave is 0.59% and 2.52% for S-wave. This means the
virtual joint plane method is better than the weak material layer method on modeling
discontinuity. Overall, the implementation of discontinuity in DLSM is successful.
Further extensions and applications of DLSM to more complex conditions, e.g.,
multiple joints, crossed joints and non-linear joints, can be performed based on the
work of this chapter.
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Figure 7.32. The modeling results of the weak material layer method and analytical solution of P-

wave/S-wave propagation through single discontinuity.

Table 7.1 Errors of the weak material layer method on modeling P-wave/S-wave propagation through

single discontinuity.

ka(GPa)  124.64 249.28 49856 12464 19943 24928 74785 12464.0
Error (%) 8.92 6.02 3.57 1.98 1.33 1.19 0.66 0.57
ks(GPa) 35.8 715 1431 357.8 5724 7155 21466 3577.7
Error(%) 1794 1798 1011 5.70 3.15 2.50 0.57 0.27
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Figure 7.33. The modeling results of the virtual joint plane and analytical solution of P-wave/S-wave
propagation through single discontinuity.

Table 7.2 Errors of the virtual joint plane method on modeling P-wave/S-wave propagation through
single discontinuity.

ko(GPa) 100 200 500 1000 2000 3000 5000 10000
Error (%) 043 004 026 042 052 053 059 053
ks(GPa) 50 100 250 500 1000 1500 2500 5000
Error(%) 252 150 070 016 0.02 013 018 0.09
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7.4 Conclusions

Abilities of DLSM on modeling wave propagation are extended and verified in this
chapter. A non-reflection boundary condition based on visco element method was
implemented into DLSM and verified through 1D and 2D wave propagation problems.
The influence of particle size on the numerical error of DLSM modeling of P-wave
and S-wave propagation was also investaged. The suggested mesh ratio (Ir) for
different conditions are provided. For DLSM modeling of wave problems, the
suggested Ir for P-wave is 1/41 and 1/90 for shear wave. In order to model
discontinuity in DLSM, weak material layer method and virtual joint plane method
are proposed. These two methods are used to model P-wave and S-wave propagation
through single discontintuty and compared with the analytical solution well.

Compared with traditional numerical methods, the DLSM has the following
advantages on modeling wave propagtoin problems

1. Discontinuities are easy to be implemented for both the weak material layer
and virtual joint plane method.

2. Computational model is easy to be generated as the meshless properties of
DLSM.

3. DLSM has the potential on modeling continuum-discontinuum wave
propagation problems, e.g., wave induced damage and influence of material
fracturing on the wave propagation.

The major shortcoming of DLSM on modeling wave propagation is that a strict
requirment on particle size is needed. It leads the computational requirement of
DLSM model is higher than the conventional methods, e.g., FEM and DEM. However,
this problem can be overcame through paralel implementation of the DLSM code,
which will be presented in next Chapter.
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(C]hlalplter 8

Paralldization of DL SM

In this chapter, parallelization of the DLSM will be presented. The motivation of
parallelization is to reduce computational time and memory requirements by serial
computing. With the development of parallel computing technologies in both
hardware and software, parallelization of a code is becoming easier than before. There
are many available choices now. In this chapter, OpenMP with multi-core PC and
MPI with cluster are selected as the parallelization environments to parallelize the
DLSM code. Performances of these parallel DLSM codes are tested on different
computers. It is found that the parallel DLSM code with OpenMP can reach a
maximum speedup of 4.68x on a quad-core PC. The parallel DLSM code with MPI
can achieve a speedup of 40.886x when 256 CPUs are used on a cluster. At the end of
this chapter, a high resolution model with four million particles, which is too big to
handle by the serial code, is simulated by using the parallel DLSM code on a cluster.
It can be concluded that the parallelization of DLSM is successful.

8.1 Introduction

The basic idea of parallelization is to distribute computations to several processors
and to execute the distributed works simultaneously. The implementation of a parallel
code is much different from that of a serial code. Fortunately, with the development of
technologies in computer science, this is becoming easier and easier. So far, there
exist three popular choices for parallel computing. The first choice is the multi-core
PC. Quad-core CPU is very common now and even the 80-core CPU prototype has
already been developed [1]. So performing parallel computation in PC is not a dream
now. The GPU computing [2] is the second choice. It has been reported that more
than 100x speedup is achieved by using GPU for some applications [3]. The last
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choice is the computer cluster which is available for many universities and research
institutes. Cluster is a high level parallelization system [4] which is made of many
computer nodes (each node could be a multi-core or GPU computer). In this chapter,
instead of giving a verbose review on the parallel computer history like the
classification made by Flynn in 1966 [5], a review on the three parallel computer
systems mentioned above and the corresponding software development environments
will be presented. The reason is that these three choices are the currently available and
popular solutions for parallelization implementation.

Personal computer (PC) refers to general purpose computer whose size and
capabilities are small and the price is low enough to make it acceptable to individuals.
PC is also called as micro computer which means its computing power is much less
than super computer. However, with the development of computer hardware and
software, nowadays PC becomes the dominant tool in performing scientific computing
and numerical modeling. The main reason is that application software and operation
system in PC are much friendly to users. Another reason is that with the improvement
of CPU and memory used in PC some engineering problems can also be solved on a
normal PC. For example, laptop equipped with a 2GHz CPU and 2GB of memory is
enough for running the DLSM model with a half million particles. Recently, a new term
called as Personal High Performance Computing (PHPC) [6] is proposed. PHPC aims
to run problems previously could only be handled on a supercomputer in a normal PC.
This may become true in the near future, if the 50-core CPU and the 64-bit operation
system are mature enough. The future PC equipped with advanced multi-core processor
will surely provide adequate computing power and memory space for scientific
computing. The multi-core processor targets at providing better performance. It
includes multiple execution units and the instructions per cycle can be executed
separately in different cores. The typical structure of a quad-core processor is shown
in Figure 8.1. The advantage of the multi-core PC is that it can handle multiple tasks
at the same time. The amount of gained performance by using the multi-core
processor is strongly dependent on the code implementation. Many typical
applications, however, do not consider parallelization on multi-core PC, which
remains an important on-going topic of research. Fortunately, parallel programming
environments such as OpenMP [7], pThreads [8] and TBB [9] can be used to implement
the multi-core version of an existing code. Normally, the parallelization of a code on
multi-core PC is relatively simple as it only needs to deal with the shared memory
environment. It does not need to consider the task distribution and communication
between different processors. However, there also exist some disadvantages of
multi-core processor [10, 11]. Firstly, adjustments of the existing code are required to
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allow maximum utilization of the computing resources. Secondly, it is more difficult
to manage the thermal problem than single-chip design. Thirdly, multithread code
often requires complex co-ordination of threads and is difficult to find bugs.
Moreover, the interaction between different threads can also cause safety problems.
Even so, our experience tells that parallel computing using multi-core processor is
stable and promising at least for research purpose. In this chapter, the multi-core
implementation of the Distinct Lattice Spring Model (DLSM) will be presented and
its performance will be tested in multi-core PCs.

CPUCor=1 CPU Cor=2 CPU Cor=3 CPU Cor=4
L1 Cacha L1 Cachs L1 Cachs L1 Cachs
! L2 Caches '
System requastinterface
N —
(}:{}5_5_]:_1&515&_&_:_1}!

Figure 8.1. The diagram of a generic quad-core processor.

Recently, GPU (Graphics Processing Unit) computing [2] is becoming a interesting
topic in high performance computing. The most attractive aspects of this new
technology are the extremely high speedup for some scientific computing problems
and the price of a GPU computer system is much cheaper than that of a super
computer. GPU was originally used as specialized processor to deal with 3D graphics
rendering. Very recently, a new concept, General Purpose GPUs, is proposed to allow
the GPU to perform massive floating-point computing [3]. The basic idea of GPU is
to put a large number of specified computing units on a single board and interpret
hundreds of thousands of threads. These threads can deal with the calculation
simultaneously. The architecture of a typical GPU computing card is shown in Figure
8.2. It has 128 thread processors and each thread processor has a single-precision
FPU and 1,024 registers. These thread processors could process different data at the
same time. The framework of memory communication is also different from the
conventional parallel computer and could largely increase the parallel efficiency, e.g.,
100x% speedup is achieved when the shared memory scheme is used [13]. There are
three available ways for developing a GPU based code. They are OpenGL[14],
OpenCL [15] and CUDA [3]. Normally, implementation of a GPU code will require
certain knowledge of the operation of GPU at hardware layer. Overall, GPU
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computing is a sheared memory system and it is a promising solution for PHPC. It
also provides a solution for real time numerical simulation. However, the hardware
and software platforms of GPU computing are still under development. For example,
the double precision GPU card will be available in a few months and CUDA will
support C++ in future. Taking into account of this delay, waiting for the technique to
become mature is a good choice.
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Figure 8.2. The Nvidia GeForce 8 graphics-processor architecture ( redraw based [12]).

Modern supercomputer often refers to computer cluster which is a collection of
computers highly connected through a high-speed network. Cluster computer is a
high level parallelization system and the most powerful computers in the world are
always clusters [17]. New developed technologies on high performance computing
(e.g., multi-core CPU and GPU) can always be merged into a cluster system. For
example, the top 5" Tianhe-1 supercomputer has integrated multi-core CPUs with
GPUs [17]. The architecture of clusters is normally based on a modular concept
which can be simply regarded as a group of specific computers connected through
internet for working together. For example, the cluster used in this work, Pleiades?2 at
EPFL, is built on a Gigabit Ethernet Network as shown in Figure 8.3. MPI (Message
Passing Interface) [18] and PVM (parallel virtual machine) [19] are programming
tools for parallelization implementation under cluster environment. In this thesis, the
free MPI library MPICH (developed at Argonne National Lab) [20] will be used. A
certain amount of modifications of the original DLSM code are required. As cluster is
a distributed memory system, the model decomposition and communications
between different processors (computer nodes) should be handled explicitly.
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Moreover, the operation system used in cluster is different from PC. For example, a
standard SUSE Linux is used as the operation system in Pleiades2 cluster. How to
integrate different operation systems on PC and that on the cluster is also a problem
facing in the parallelization of DLSM. In this chapter, the Distinct Lattice Spring
Model (DLSM) [21, 22] will be parallelized both for multi-core PC based on
OpenMP and for cluster based on MPI. Firstly, the implementations of the parallel
DLSM under different platforms will be presented. Then, the performance of the
parallel DLSM codes will be tested on different computers. Finally, some
conclusions on the parallelization of DLSM will be derived.
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Figure 8.3. Current configuration of Pleiades2 Cluster of EPFL [16].

8.2 Parallelization of DL SM on multi-core PC

This section will present the parallel implementation of DLSM code based on OpenMP.
The motivation is to reduce computational time on multi-core PC. As DLSM is an
explicit method in time, only minor changes are needed to parallelize the code.
Quad-core PC is quite common now, but serial code cannot well utilize its computing
resources. OpenMP provides a useful tool to parallelize software for multi-core
environment. It is an application program interface which comprises compiler
directives, runtime library routines and environment variables. It can work under the
compiler environments of FORTRAN, C and C++. Fork-joint model is used in
OpenMP to parallelize a task. Hereafter, the parallel DLSM code based on OpenMP is
named as the multi-core DLSM.
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The work scheme of the serial and multi-core DLSM are shown in Figure 8.4. It can be
seen that the serial DLSM code has only one main thread and the force and
displacement of particles are calculated sequentially (as shown in Figure 8.4(a)). The
multi-core DLSM uses the fork-joint model to let one cycle being calculated by more
than one processor (see Figure 8.4(b)). The parallel DLSM works as follows. Firstly,
the master thread is activated when DLSM begins execution. Then, when the master
thread executes the points where parallel operations are required, the master thread
forks and additional threads are used to realize parallel computing.

- T T T 2
| I
I I
Y[ PA PA |
s PAT] [ PR ]
force task displacement task

(a) serial DLSM

DLSM thread

0
H

force task displacement task

(b) parallel DLSM

Figure 8.4. Scheme of serial and parallel implementation of DLSM.

In multi-core DLSM, the force calculation and the displacement update are the only
procedures needed to be parallelized. Only a few macros are added to produce fork for
a single loop. A code segment of OpenMP implemented DLSM is shown in Figure 8.5.
The most attractive point of OpenMP implementation is that it can increase the
computational performance of the code automatically with only a few modifications
and no change of code structure. In section 8.4, examples will be presented to show the
efficiency of the multi-core DLSM code tested on quad-core PCs.
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int i=0;
#pragma omp parallel for
for(i=0;i<N;i++)

{
pList[i].x[0]+=pList[i].v[0]*dt;
pList[i].x[1]+=pList[i].v[1]*dt;
pList[i].x[2]+=pList[i].v[2]*dt;
by

Figure 8.5. The code segment of the multi-core DLSM.

8.3 Parallelization of DL SM on cluster

The multi-core DLSM targets at full utilization of the computing resources on
multi-core PC. Although the 50-core CPU exists in prototype and may be available
for practical usage in the near future, the limitation on available cores and memory in
a normal PC cannot be removed completely. Speedup of the multi-core DLSM shall
be limited eventually. Moreover, the shared memory strategy also limits the modeling
capability of the multi-core DLSM. In this section, the MPI based parallelization of
DLSM on cluster will be presented to solve these problems. It is named as the cluster
DLSM in order to distinguish with the previous one for multi-core PC.

8.3.1Par allelization strategy

The domain decomposition is used as the parallelization strategy for the cluster DLSM.
Firstly, the simulation domain is divided into many small cubic cells. Each cell contains
a list of particles fallen in it. Secondly, the simulation domain is divided into a number
of subdomains (larger cubes) based on these small cubes. Each subdomain contains a
number of small cubes. Particles in each subdomain are distributed to a processor to be
calculated separately from the others. This scheme is called as the linked cell method in
Molecular Dynamic (MD) parallelization [24, 25]. The number of subdomains is equal
to the number of processors used in the simulation. We have the following relation

np = np, X Np, X Np, (8.1)
where np is the number of total processors (subdomains), npx, NPy, Np; are the number of
dividing in each direction of the model. A decomposition code (Domain Cutter) is

designed to produce, for each subdomain, the data files, the information of
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corresponding neighbors and the index of particles needed to be communicated. The
decomposition can be finished automatically after npy, npy, np, are given.

Figure 8.6. Decomposition of the simulation domain Q into sixteen subdomains.

In the cluster DLSM, the force calculation procedure has to use the information of
particles which do not belong to the current processor. Communication is needed to
exchange the necessary information between different processors. In
three-dimensional case, a typical subdomain has 26 neighbors. This will cause a large
number of communication operations to be performed. By using a proper
communication methodology [25], this number can be reduced to 6. The
communication strategy is shown in Figure 8.7. First, the data are exchanged in x3
direction (left), then, data are exchanged in x2 direction (middle), and finally the data
are exchanged in x1 direction (right). In Figure 8.7, green cells always send data to
the yellow cells and the yellow cells always receive data from the green cells. Data
are exchanged mutually between two neighboring face-to-face subdomains. The
range of exchanging cells in each direction is different so that the communications
between the corner-to-corner neighbors are avoided. It can be seen that only six
sending and receiving operations need to be performed. The exchanged data include
position, velocity, displacement, and strain state of the neighbor particles.
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Figure 8.7. Communication scheme used in the cluster DLSM.

8.3.2 Implementation

In this section the MPI implementation of DLSM on cluster will be presented. The
parallel implementation includes not only the MP1 communication part but also the
model pre-processing, solving and post-processing. Figure 8.8 shows the work flow
of the cluster DLSM. Since PC is friendly to be used and cluster is much powerful in
computing, the basic idea of this design is to let PC deal with the pre-processing and
post-processing parts and cluster deal with the solving part. At the hardware layer, a
server/client mode is used. PC is used as the client and cluster is used as the server
for parallel computing (see Figure 8.8(a)). At the software layer, computing task is
done through the cooperation between different codes running at Windows and
Linux OS respectively (see Figure 8.8(b)). Firstly, the input data files are prepared
by using a GUI program (RockBox DLSM3D) developed for Windows. When
these data files are ready, they are sent to the cluster through network. Then, the
parallel DLSM solver at cluster reads these files, solves the problem and produces
the corresponding result files. Finally, the result files are copied to PC through
network and transformed by a post-processing code (DLSM3D Collector) into the
format which can be processed on PC by RockBox DLSM3D. This design makes
the whole parallelization work only focusing on the MPI implementation of the
solver. Pre-processor and post-processor still use the serial version developed for
PC. By doing so, the respective advantages of different machines (cluster and PC)
and different operation systems (Windows and Linux) are fully utilized.
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Data files

Reslt files

(1)Pre process
(2)Parallel data prepare
(4)Parallel result files integrate (3) Parallel computing
(5)Post process

(a) work flow at hardware layer

DomainCutter 1.0

RockBox DLSM3D 1.0 DLSM3D Cluster 1.0
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DLSM3D Collector 1.0
Data file
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Windows

(b) work flow at software layer

Figure 8.8. Work flow of the parallel DLSM under cluster enviroment.

In the following, the MPI implementation of DLSM will be presented. The goal is
to run DLSM model on a number of allocated processors in cluster through the
domain decomposition approach. Data communication between different processors
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is realized through the MPI programming environment [18]. MPI provides a library
that allows starting a given number of processes simultaneously and assigning a
unique identity number for each process. It also provides communication functions
which can be called to exchange the data between different processes. There are
more than one hundred functions provided in the MPI library. Fortunately, the
parallelization of the DLSM only uses seven of them. They are MPI_Init,
MPI1_Comm_size, MPI_Comm_rank, MPI_Barrier, MPI_lsend, MPI_Recv and
MPI1_Finalize. A few modifications are needed for the parallelization of DLSM
based on these MPI functions. As a demonstration, the main function of the cluster
DLSM code is shown in Figure 8.9.

int mainfint arge, char ®*argv[])

int myid, numprocs:
double ztart, finish:

MPT_Init (Ravge, Sargv):
MPI_Comm_rank (MET_COMM_WOBRLD, &syid) .
MPI_Comm_zize (MPT_COMM_¥OELD, &nnaprocs):

AT Sl

{
printf(” n"):
printf(” o)
printf(" e B "un“)'_
printf(” DLEM3D Cluster 1.00 )
priotf(” Meshless based Lattice Spring model W)
printf(” Copyright (c) 2008 Rock Mechanics Laboratory (LMR) Sn):
printf (" #uthor: Gao—Feng ZHAD W)
prinlf(" =====================s====o=s=s=s=s=s==s=o=s=o==s=s=s=s=s=sszs=s=s========= \p )
printf (" S0
printf (" Sn)

start= (double) r_‘lock-(:l :

I

CleshlessLatticeSpringfodel mlsModel;
mlsModel m_rank=myid;

mlsModel m_nprocs=rumproes;

mlzllodel. Readfodel (J;

mlsllodel. SolvellodelIT();

MPT Barrier (NPT COMM EORLD):
TE tayi d==0)
{

finizh= (double)elock():
printf ("HLS3D Spend Time=%f\n", (fini sh-start)/CLOCKS FER SEC):

Lesnlll

| MFI Finelize(: |
cun, get U
raturn 0

Figure 8.9. Code segment of the cluster DLSM.

In the cluster DLSM, contact detection and particle position update, failure
treatment and results output will be processed separately for different processors.
During the calculation, each process outputs its own results to a separate file which is
identified by the process number. These files can be combined into a single file and
be post-processed on PC. When the force calculation procedure is executed in the
cluster DLSM, particle information will be exchanged between processors by using
the communication scheme shown in Figure 8.7. Currently, the case of particle
moving out of the present processor and entering into another processor is not
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considered because the communication of bond information between different
processors is difficult. Problems involving dynamic contact detection can also be
solved if the relative deformation between any two neighboring subdomains is not
too large compared to the size of cell, so that it would be sufficient to use only the
neighboring particles as the cushion layer between the two subdomains.

8.4 Perfor mance Evaluation

In this section the different parallel DLSM codes are tested on different parallel
computers. There are a large number of commonly used performance measures for
evaluating a parallel code. In this thesis, the speedup Sis adopted. It is defined as the
ratio between the parallel runtime for a given number of CPUs and the serial runtime
[26], i.e.,

S==2 (8.2)

where t, is the runtime of the serial code using the best optimization and t is the
runtime of the parallel code for the same problem. Another important index is the
efficiency, E*", which is the ratio between the speedup and the number of used CPUs,
e,

S
=2 8.3
- (83

It is helpful in determining the proper n to be used. The speedup S can never exceed
the number of used CPUs. Thus the efficiency E*" should satisfy

0<E™<1 (8.4)

8.4.1 The multi-core DL SM

A Brazilian disc model with 157,200 particles is calculated on two types of quad-core

PCs. The parameters of the two used multi-core PCs are listed in Table 8.1. Figure

8.10 shows the simulation results obtained by the serial and multi-core DLSM codes.
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It can be seen that the results obtained by the two codes are identical. This indicates
that the parallel implementation is correct. The CPU utilization is shown in Figure 8.11
for the serial and multi-core DLSM codes. It can be seen that the serial code cannot take
full advantage of the multi-core PC. Only 8% computing resource is used for the serial
DLSM code, but this number increases to 88% for the multi-core DLSM code. This
means the OpenMP implementation is effective and the computing resources can be
fully utilized. The speedup of the multi-core DLSM has been tested on the first
quad-core PC. The second one is only used to obtain the maximal speedup of the
multi-core DLSM using the available PCs in LMR. Because the super thread
technology is used in the second PC, the operation system will display eight CPUs
instead of four (as shown in Figure 8.11). When the multi-core DLSM code is running
on this computer, it is hard to control and display the type of used computing unit (super
thread or CPU core). Thus, results from the second PC are not suitable for speedup
analysis.

Table 8.1. Parameters of the used quad-core PCs.

CPU Name Cores  Superthread  Speed Memory
Intel Xeon 4 No 240 GHz 3GB
Intel Core i7 950 4 Yes 3.07GHz 6GB

(a) Serial code (b) Parallel code (4 CPUs)

Figure 8.10. Simulation results obtained from the serial and parallel DLSM codes.
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‘= \Windows Task Manager o | B[] ‘= \Windows Task Manager =0 Eoh =<
Eile Options View Help Eile Options View Help
Applications | Frocesses [Sarwr.es | Performance | Melwo:kn; | Users Applications [Pmcesses lsamnas Performance | Netwarking ]Uge:s
CPU Usage History CPU Usage History
Memory Phiysical Memory Uisage History Physical Memory Uisage History
Physical Memory (MB) System Fhysical Memory (ME) System
Total 6135 Handles 16697 Total 6135 Handles 15754
Cached 1362 Threads 8a3 Cached 2883 Threads 823
Available 4836 Processes 56 Auvailable 4856 Processes 53
Free 3|32 Up Time: 0:00:16:00 Free 2038 LUip Time 0:00:40:18
Comenit {GE) 111 Cormenit (GB) 11
Eernel Memory (MB) Eernel Memory (MB)
Paged 142 Paged 155
Monpaged 50 [ H Resource Monitor, .. Monpaged 54 E # Resource Monitor... i
Processes: 56 CPU Usage: &% Physical Memory: 2156 Processes: 53 CPU Usage: 88% Physical Memorny: 2096

(a) Serial DLSM (b) Multi-core DLSM

Figure 8.11. CPU utilization of the serial and multi-core DLSM codes.

The brazilian disc model is simulated on the first quad-core PC. The computing time
of the multi-core DLSM is compared with that of the serial DLSM and the results are
given in Figure 8.12. It can be seen that the serial code is a little faster than the
multi-core one when only one CPU is used. This is because the parallel code inserts
some instructions to the original code, which cost some additional computing time.
However, when two cores are used, the speed of the multi-core DLSM is obviously

faster.

2 CPUs

250000 -

= Computation time (ms)

I I/

3 CPUs

200000 -

150000

100000

50000

Serial 1CPU 4 CPUs

Figure 8.12. Computational time of the multi-core DLSM with different CPU:s.
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In order to study the influence of model size on speedup, three models, Model A (2,445
particles), Model B (19,760 particles) and Model C (157,200 particles), are computed
by using both the serial DLSM code and the parallel DLSM code on the first PC. The
speedup of the parallel code is shown in Figure 8.13. Results show that the speedup of
the multi-core DLSM varies with the size of the simulated model non-monotonically.
Overall, the trend is the same for different model sizes and a speedup around two
could be achieved using the first PC.

2.5 1
2 4
53 1.5 -
o
(3]
S
%) 1 -
== Model A
0.5 - == Model B
Model C
O T T T 1
1 2 3 4

CPUs
Figure 8.13. Speed up of the multi-core DLSM code.

In order to know the maximal speedup of the multi-core DLSM code, a Brazilian disc
model with 78,500 particles is calculated on the second PC. It is a static simulation
and in order to obtain the equilibrium state 20,000 cycles are calculated. The
computing time is 86.16 minutes for the serial code, while it reduces to 18.43 minutes
for the parallel code. A speedup of 4.68x is achieved. It is much higher than that
obtained in the first PC. This is due to the fact that CPU equipped in the second PC is
more advanced than that in the first one, e.g., larger cache and the super thread
technique. A 4.68x speedup is desirable for practical application, e.g., a simulation
previously taking four days could be finished now in one day. Now, it can be
concluded that the implementation of the multi-core DLSM is successful.

8.4.2 Thecluster DLSM

In this section, the performance of the cluster DLSM code is tested. The test problem is

shown in Figure 8.14. The DLSM model is used to simulate the fragmentation process
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of a rock specimen under one TBM cutter. The particle size is Imm and the model
dimension is 400mmx5mmx200mm. The model is composed of 400,000 particles.
The decomposition of the DLSM model for different cases is shown in Figure 8.15. Due
to the limitation of available CPUs in the cluster, the maximum number of CPUs used to
evaluate the speedup of the cluster DLSM is 256.

v=100mm's

Figure 8.14. Scheme of single TBM cutter induced fragmentation problem.

8 CPUs 16 CPUs 32 CPUs

64 CPUs 128 CPUs 256 CPUs

Figure 8.15. Domain decompostion for the TBM induced fragmentation problem.
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Figure 8.16 shows the simulation results of the cluster DLSM. It turns out that the
cluster DLSM can work correctly with a large number of CPUs involved in the
computing simultaneously.

AUTHOR:ZHAD
DATE: Wednesday, December 23, 2009

DESCRIBE:X[-0.50,400.50),%[-0.50,5.500,Z[-0.50,200.53]
STEP:Z ITEM:MLS3D EPEX

-1.359e-004
-1.116e-004
-.733e-003
-6.316e-005
-3.892e-005
-1.463e-003
9.54Ze-006
3.37Ge-005
5.801e-005
§.274e-005

1.065e-004

(a) Contour map of &

AUTHOR:ZHAD
DATE Wednesday, December 23, 2003

DESCRIBE:%[-0.50,400.50],%[-0.50,5.50],Z[- 0.50,200.53]
STEP:Z2 ITEM:MLS3D BROKEM

0.000e+000
1.000e-001
2.000e-001
3.000e-001
4.000e-001
2.000e-001
6.000e-001
7.000e-001
6.000e-001
9.000e-001

1.000e+000

(b) Crack pattern

Figure 8.16. Simulation results of the cluster DLSM using 256 CPUs.
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When a parallel job is finished, a record file will be produced (as shown in Figure 8.17).
Information of computing time can be found in this file, such as the total CPU time (the
summed machine time of the allocated nodes) and the wall time (the actual time used in
the cluster). The code itself also prints the computing time of the processor whose rank
number equals to zero, which is called the code time. These data for different cases are
listed in Table 8.2. It is found that, only considering the code time, a perfect linear
speedup is obtained. However, after careful investigation, it is found that it is not
scientific to calculate the speedup through the code time, because it omits the I/O
operation and the communication time. For this reason, the speedup is calculated based
on the wall time spent for each case. It can be seen that a maximal speedup of 40.88x is
achieved for the cluster DLSM code.

MLS3D Spend Time=10.890000

Jobld:1646334.pleiades2.epfl.chResources requested:
neednodes=64:ppn=4,nodes=64:ppn=4,walltime=00:10:00Resources used:
cput=00:45:48, mem=1260392kb,vmem=7075212kb,walltime=00:01:10List of nodes:
al101,a102,a103,a104,a105,a106,a107,a108,a109,a110,a111,a120,a121,a123,a124,a125,
al27,a128,a129,a130,a131,a144,a145,a146,a147,a148,a149,a150,a152,a153,a154,a156,
al63,a164,a165,a166,a169,a170,a171,a172,a173,a174,a176,a177,a179,a180,a181,a182,
al185,a186,a190,a192,a193,a194,a2,a207,a208,a210,a3,a4,a74,a83,a90,a93 a210: Done
at Wed Dec 23 00:54:48 CET 2009.

Figure 8.17. Fragement of the output file in pleiades2.

Table 8.2. Performance analysis results of the cluster DLSM.

CPUs total cputime (s) code time (s) wall time (s) S E™®)

1 2858 2859.61 2862 1 100
4 3557 893.25 901 3.1765 79
8 3508 435.01 488 5.8648 73
16 3308 199.04 426 6.7183 42
32 2990 89.96 196 14.602 46
64 2866 40.49 144 19.875 31
128 2705 18.87 88 32.523 25
256 2748 10.89 70 40.886 16
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As mentioned before, the advantage of the cluster DLSM code is not only making the
computing time shorter but also making it possile to solve problems which are
beyond the capacity of a normal PC. It has been found that when the number of
particles in the DLSM model exceeds one million (more than ten million bonds), it
will become unsolvable for a normal PC because of the limitation of its memory
space. As distributed memory is used in the cluster DLSM, this problem can be easily
solved by using an adequate number of processors in the cluster. In the following, the
three dimensional case of the TBM cutter problem (as shown in Figure 8.18) is
chosen as an exmaple of demonstration. For this problem at a medium discretization
level, even one quarter of the model needs four million particles. It exceeds the
memory limit of a normal PC. Now, the problem is solved by the cluster DLSM code
using 128 CPUs on Pleiades2. The simulation results are shown in Figure 8.19.

¥e model

200mm

Figure 8.18. The 3D model of single TBM cutter induced fragmentation problem.
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AUTHOR: ZHAD
DATE: Wecnesday,

DEECMDE;K]- 0.

STER:2 ITEMMLS3
-5.5548- 003
-4 942e-003
-4, 3300 =003
-3717e-003
-310%-003
-24838-003
-1.8818-003
-1.26E0=003
-6.56 18- 004

LR

controur map of £ crack pattern

Figure 8.19. The 3D simulation results of the TBM cutter induced fragmentation.

8.5 Conclusions

In this chapter, the parallelization of the Distinct Lattice Spring Model (DLSM) is
presented. The available parallel environments are briefly introduced. Then, the
parallelization of DLSM on multi-core PC and cluster are presented. The OpenMP is
used to parallelize the DLSM code and make it working effectively on multi-core PC.
The OpenMP implementation only needs a few modifications of the original code.
Examples are given to show the performance of the parallel DLSM code on
multi-core PC. It is found that the implementation is effective and successful.
Another version of the code, the cluster DLSM, has been developed for massive
parallel computing using clusters. The parallel DLSM solver on cluster is
implemented by using MPI. The whole software package is finished through the
cooperation between PC and cluster. The performance of the cluster DLSM is tested
and a speedup of 40.88 is achieved for the case of using 256 CPUs in the Pleiades2
cluster. Finally, a problem with four million particles, which is previously impossible
to handle by a normal PC, is successfully solved by using the developed cluster
DLSM code.
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Chapter g

Implicit DLSM

The DLSM model in Chapter 4 is based on explicit solution method in which a very
small time step has to be chosen for numerical stability. This will lead a very long
computing time for static ssimulation. In order to solve this problem, a preliminary
study on the implicit solution on DLSM is performed. By directly solving the system
eguation, static problem can be solved through one step [1]. In this section, the 2D
implicit DLSM isintroduced for static problems.

9.1 The model

The proposed lattice spring model isillustrated in Figure 9.1 in which the material is
represented by a distribution of particles linked through bonds. Each bond includes
one normal spring and one shear spring.

The bond stiffness matrix is of the form

bond __ kn 0
e [t O] o

where k, isthe normal stiffness and k; is the shear stiffness. Assume the strain in
the local coordinate system is (&€« &), and then the normal and shear
deformation of the bond can be expressed as

U={le,.les) (9.2)

where | isthe original length of the bond. Note that in the Born spring model, U is
given directly by the displacement differences of the two end particles of the bond
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aong the normal and shear directions, i.e.(Au,,Au,). The norma strain &,, in
Equation (9.2) can be written as

=&e,; (9.3

where ¢, isthestrainin the global coordinate system and & is the direction vector
of the bond which is (cosf,sin /). The shear strain ¢,; in Equation (9.2) is given
by

=&en (9.4)

where n is the unit vector perpendicular to & which is (—sinf,cosf). After
some matrix operations, we obtain

(=Ts (9.5)
where
T:I{ cosz,é sinzfg zcosﬁsi_nﬁ} (96)
—cosfBsinf cosfBsinf cos’ f-sin® B

s=[€xx,8w,8xy]T (9.7)

AN/
RAvvivL

s
%T/T/T/T/\/

&4

4(null)
Typel Typell

Figure 9.1. The 2D lattice spring model and the two types of bond.
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Here s is the vector composed of the three strain components. It can be calculated
according to

s=Bu (9.8)

where B is the interpolation matrix and u is the displacement vector. For the
type-1 bond (see Figure. 9.1) which only belongs to one triangular element, we use the
common finite element interpolation which gives

NS, O N5, O Nf, O
B=| 0 N, 0O N, O N (9.9)

1 e 1 e 1 e 1 e 1 e 1 e
2 Nl,y 2 Nl,x 2 N2,y 2 N2,x 2 N3,y 2 N3,x
u=[u,v,u,,v,,u,v,]" (9.10)
where NF is the element shape function associated with the node i. For the type-11

bond (see Figure. 9.1) which belongs to two triangular elements, a moving least
squares (MLS) procedure [2] is adopted to calculate s. In this case, we have

Nl,x O N2,x O N3,x O N4,x O
B=| O N,, 0 N,, 0 N, 0 N,, (9.11)
% Nl,y % Nl,x % N2,y % NZ,X % N3,y % N3,x % N4,y % N4,x
u=[u,v,U,,V,,U,,V,U,,V,]" (9.12)
where N, and N,  arethediffusive derivatives given by
W
Ni,x:FZ Z W, W (Y _yk)G(XUXj’Xk) (9.13
j# k> ke
W
NiYy:FZ > W (X —X)O (X, X, %, ) (9.14)
j# k> ke

with

O (XX X, ) ==X, ¥, + X Y, + XY, = XY, = X Yy + X, Vi
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dZZ Z Z WinWk(G(Xi’XJ’Xk))

i=1,2 j=i+13 k=j+1,4
Theweight function w used in this paper is

w(r)= ) (9.15)

where f=r/r_ with r= \/(xn —x)"+(y,-y)" and (x,,Y,) being the reference
point (the center of the bond in this chapter).

The strain energy stored in each bond is

I, :%OK bond T (9.16)

The global stiffness matrix contributed by each bond is obtained as

2
K" {aa g[b }:(TB)T K™™TB (9.17)
Uou;

Finaly, the global stiffness matrix is assembled bond by bond. The boundary
conditions specified by displacement or force are treated in the same method as in the
standard FEM.

9.2 Numerical Examples

9.2.1 Beam subjected to bending

The geometry and boundary conditions of this plain-stress problem are described in
Figure 9.2. The left side of the beam is fixed in the x direction and the left-bottom
corner is fixed in both x and y directions. A shear stress equalsto 1IMpa is applied
on the right side of the beam. The top and bottom boundaries are subject to the stress
free condition. The elastic constants of the materia and the corresponding spring
parameters for the proposed DLSM are given in Table 9.1.
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Table 9.1. Material constants, model parameters and numerical errors of CLSM and DLSM compared
with FEM results for the beam bending problem.

E (MPa) 1% o k., (MN/m)  k (MN/m)  Em 1(%)  Er 2(%)
10000  0.1000 3.6447  6097.1021 3879.9741 88.2 2.8
10000  0.2000 36447  6859.2398 2286.4133 84.8 15
10000 03000 36447  7839.1313 603.0101 71.2 2.1
10000 03333 36447  8231.0878 0.0 25 2.0

The final algebraic equation assembled from the bond stiffness matrix given by
Equation (9.17) with the implementation of the boundary conditions is solved by a
direct method for sparse matrix. The lattice size is 4m, which corresponds to atotal of
1250 lattice nodes approximately. Figure 9.3 shows the displacement results predicted
by FEM, CLSM and DLSM with the Poisson’s ratio of 0.1. The results of DLSM are
in good agreement with those obtained by FEM, while thisis not true for the results of
CLSM. Compared to the displacement results obtained by FEM, the maximal relative
errors of CLSM and DLSM (denoted as Err_1 and Err_2) are given in Table 9.1 for
four different values of the Poisson’s ratio. In al cases the errors of DLSM are rather
small, while the errors of CLSM are very large except for the case of Poisson’s ratio
equal to 1/3 where shear spring is absent. Therefore, it can be concluded that shear
spring must be introduced by preserving rotational invariance as done in DLSM in
order to reproduce reasonably the elastic solutions for the Poisson’s ratios other than
/3.
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Figure 9.2. The geometry and boundary conditions for the beam bending problem.

The convergence of DLSM is studied by solving the same problem with different

lattice sizes. Figure 9.4 shows that when lattice size becomes smaller and smaller, the
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result of DLSM gets closer and closer to the reference one obtained by FEM with a
fine mesh. The influence of lattice type is also studied by comparing the results of
four different lattice structures as shown in Figure 9.5, in which structure a is made of
particles with a dlight irregular distribution, structure b consists of particles with a
regular distribution, and structures ¢ and d are obtained by randomly moving the
particlesin structures a and b respectively.
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11822001 o : 1 39396001
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A01e-002 -3.939e-002
1.176e-001 I ; 3 0.000e+000 .

(e) The x-direction displacement (DLSM) (f) The y-direction displacement (DLSM)

Figure 9.3. Contour plot of the displacement results predicted by FEM, CLSM and DLSM for the beam
bending problem.

The model parameters and the results for this study are summarized in Table 9.2, from
which it is observed that the random lattice model gives better results than that given
by regular lattice model. The reason is that the relationship between the model
parameters and the material constants is derived based on the assumption that the
bond orientation distribution is uniform. Hence, a random lattice is preferable when
applying the relationship to obtain the model parameters from the material constants.
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Figure 9.4. The y-direction displacement along the top surface predicted by DLSM with different
|attice sizes for the beam bending problem.
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Figure 9.5. Different lattice structures for the beam bending problem.
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Table 9.2. Material constants, model parameters and numerical errors of DLSM for the beam bending
problem with different lattice structures.

Structure  E (MPa) 1% a®® k., MN/m)  k, (MN/m)  Err_2(%)
a 10000 0.2000 3559  7023.1976 2341.0659 6.01
b 10000 0.2000 4.0750  6134.9693 2044.9898 6.23
c 10000 0.2000 3.6447  6859.2398 2286.4133 1.46
d 10000 0.2000 42213  5922.3862 1974.1287 3.11

9.2.2 Squar e hole subjected to compression

In this subsection, a more complex plain-stress problem is solved by DLSM. Figure
9.6 shows the geometry, the loading condition, and the lattice structure for this
problem. The elastic constants are E=10°MPa and v=0.2 or 0.4. The results
are presented in Figure 9.7 and Figure 9.8. Again, a good match between the results
by DLSM and the elastic solutions by FEM is observed. Like FEM, the proposed
method cannot solve the case of v=0.5. However, this is not a deficiency of the
method, because incompressible solid materials do not exist.

MPa )]

.

X \ 100m

Figure 9.6. The geometry and boundary conditions for the square hole problem.
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Figure 9.7. Contour plot of the y-direction displacement results for the square hole problem.
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Figure 9.8. The y-direction displacement along the top surface of the square hole.

9.2.3 Fracture simulation

The proposed model is applied to the fracture simulation of a solid specimen with a
side notch subjected to quasi-static tensile loading in the plain-stress condition. The
geometry and the loading setup are shown in Figure 9.9. The controlled displacement
on the top is 10%m. The elastic constants of the materid are E=10°MPa and
v=02.
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Figure 9.9 . The geometry and boundary conditions for the fracture simulation of a notched specimen

under uniaxia tensile loading.

The purpose of this example is to demonstrate the easy feature of the model for
fracture ssmulation; we only consider the tensile failure of bond, which occurs when

-F, >F

where F, is the normal force of the bond and F, =u.k, is the tensile strength of
the bond with u_ being the limit value of the bond's stretching. Whenever a bond
fails, it is deleted from the calculation procedure. The simulation was performed using
u. =0.0003. The damage pattern is presented in Figure 9.10 for four stages. The bond
in which failure occurs is marked by double red lines around the center of the bond.
With regard to the crack patterns obtained, the ssmulation gives a realistic description
of the fracture process of the notched solid specimen under tensile loading.
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Figure 9.10. The fracture process predicted by implicit DLSM.

9.3 Conclusions

The implicit DLSM is developed and compared with FEM solutions. Results show
that the DLSM system equations are numerically stable even when the negative shear
spring is used. In this sense, the DLSM can also be used as a meshless method like
EFG and FPM. Moreover, DLSM have advantages over exiting meshless methods,
e.g., EFG, FPM and SPH, on stability, no integration requirement and easy to deal
with heterogeneity problems. Results provide confidence on further development of
implicit dynamic DLSM 3D code for quasi-dynamic/quasi-static analysis.

9.4 References
1. G.F Zhao, J. Fang, and J. Zhao. A MLS-based lattice spring model for simulating elasticity of
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(C]hlalptter 10

Conclusions and further development

10.1 Summary and conclusions

A micro-macro and continuum-discontinuum coupled model and corresponding
computer codes have been developed in this thesis. The goal is to provide a suitable
numerical tool which satisfies all the requirements mentioned in Chapter 1 dedicated
to the rock dynamics study. This goa has been preliminarily achieved through seven
integrated, yet relatively independent works, which are summarized in the following.

1) A new microstructure based model, RMIB, is proposed to describe the elastic
continuum. The model has an underlying microstructure consisting of discrete
particles connected by normal and shear springs. Based on the Cauchy-Born rules and
the hyperelastic theory, relationships between the micromechanical parameters and
the macro material constants are derived. Relationship between micro failure law and
macro failure law is preliminarily investigated. The results reveal the importance of
building the corresponding numerical model.

2) Based on the RMIB theory, a numerical model DLSM is proposed. DLSM is
different from the conventiona lattice spring models in that a shear spring is
introduced to model the multi-body force through the spring deformation. The method
of evaluating the shear displacement is proven to be able to keep rotational invariance.
By doing this, the DLSM model can represent the diversity of the Poisson’s ratio.
Microscopic spring parameters are directly obtained from macroscopic material
constants based on the RMIB theory. Numerical examples are presented to show the
abilities and properties of DLSM in modeling elastic and simple dynamic failure
problems.
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3) A multi-scale model, m-DLSM, is proposed to combine DLSM with NMM. An
inter-element model is proposed to couple these different methods. The coupling
procedure and technique are presented. The model includes three-layer structures.
During calculation, the inter-element model can be automatically transformed into the
particle based model. Examples are given to demonstrate the feasibility of m-DLSM.
The model can solve problems which are memory demanding for DLSM on normal
PC.

4) The ability of DLSM on modeling dynamic failure is studied. A general form of
congtitutive law for the spring bond is developed based on the principle of damage.
The proposed congtitutive law includes linear, hardening and softening parts.
Empirical equations relating tensile strength and fracture energy with the micro
parameters are derived. Two examples on dynamic fracturing of PMMA and rock
material are presented to illustrate the ability of solving this kind of problems.

5) The developed DLSM code is used to study wave propagation through rock
material and jointed rock masses. Non-reflection boundary is implemented to enhance
the DLSM modeling of wave propagation in infinite domain. Influence of particle size
on numerical accuracy of DLSM modeling of wave propagation is investigated.
Proper values for the mesh ratio used in DLSM modeling of P-wave and S-wave
propagation are provided. To represent discontinuity in DLSM, the weak material
layer method and the virtual joint plane method are proposed and implemented into
the DLSM code. Wave attenuation through single joint is modeled and compared with
analytical solution.

6) The parallelization of DLSM is studied. Two paralel codes, multi-core DLSM and
cluster DLSM, are developed. The multi-core DLSM can fully utilize the computing
resources of modern PC. It can provide a maximum speed-up of 4.68 on a quad-core
PC. The cluster DLSM can achieve a maximum speed-up of 40.89 when 256 CPUs
are used. It can be concluded that the DLSM model is suitable for parallelization on
different platforms.

7) Theimplicit 2D DLSM for static analysisis developed. A mesh based methodology
isused for strain computing and the solution can be directly obtained by solving linear
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algebraic equations. Results are stable and consistent with FEM results.

10.2 Futureresearch

As a newly developed numerical model and code, there still are substantial works to
be done to improve. For example, further calibrations, model developments, and more
broad applications are needed. The prospected research context includes:

Calibrating DLSM through experiments

In this thesis, the DLSM code is validated for both static and dynamic elastic
problems. Preliminary applications in dynamic failure show that the code is capable
of reproducing some experimental observations, e.g., the correct dynamic cracking
velocity, cracking branching and dynamic fracture toughness. However, the
experiments referred in this thesis are not specially designed for the validation of
DLSM. Performing experiments on wave propagation and dynamic compressive
failure and comparing the obtained data with the DLSM modeling results are needed.

Sudying mechanisms of rock fracturing and failure

One of the main objectives of this thesis is to provide a better numerical tool for
studying mechanisms in rock mechanics. DLSM is a microstructure based model
which is made up of springs and based on the Newton’s second law. Failure law used
in the model is aso simple because it is based on the distance between two particles.
For this reason, the modé is suitable to study some mechanisms of rock mechanics,
e.g., the loading rate effect of rock material failure and strength. However, DLSM
modeling of the compressive failure is still not satisfactory. A possible solution for
this problem is attempted, in which the model is built based on the microstructure
information from digital picture (see Figure 10.1). The simulated strain stress curves
of uniaxia tensile and compressive tests are shown in Figure 10.2. When explicitly
considering the microstructure of rock material, the ratio of compressive strength to
tensile strength predicted by DLSM is 12.35, which is also the typica value for rock
materials.
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(a) Digitd picture[1] (b) Plane view (c) 3D view
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Figure 10.1. The used microscopic model of rock material and the corresponding DLSM modeling of
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Figure 10.2. The strain stress curves predicted by DLSM for the uniaxial tensile and compressive tests.

Developing DLSM for multi-physical problems
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The multi-physical modeling is one of the challenges existing in materia science and
has been studied through various methods in different areas [2, 3, 4]. The classical
LSM has already been successfully used in multi-physical simulations. The DLSM
also has potentia in this field. For example, the thermo-mechanical coupling is
relatively easy to be implemented. The microscopic thermal parameters of the lattice
spring can be obtained as

n= 2 (10.1

where 7 isthe thermal resistance of the bond, | is the bond length, V is the volume
of the model and k is the macroscopic heat conductive coefficient. This relation can be
directly implemented in DLSM for the purpose of thermo-mechanical modeling.

Developing GPU based high performance DLSM code

The new GPU computing technique provides a powerful platform for paraléization
of DLSM. The speed-up achieved in some GPU applications is reported to be more
than hundreds [5]. To obtain the compressive results shown in Figure 10.2, the
simulation takes ten days in the fastest PC (Intel Corei7 950) of LMR and one day in
Pleiades2 when 64 CPUs is used. However, it may only need a few hours if the
parallelization of DLSM is developed for GPU computing environment.

Developing implicit 3D DLSM

Chapter 9 presents an implicit DLSM model for two dimensional case. The model is
based on a FEM mesh and MLS interpolation. Y et, the 3D implicit code is still not
developed. The implicit 3D DLSM is more complex than the 2D DLSM. A prototype
code, Ball3D, had been already developed, which is earlier than DLSM and based on
implicit scheme. One of the applications of Ball3D is shown in Figure 10.3. Further
development was given up as the code can only handle a few thousands of spheres.
However, this kind of model has advantages on solving quasi-static problems as large
time step can be used. So implementing the implicit 3D DLSM is another possible
future work.
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The dimension of the block is 8x12x8. 40
1t made up from 12 bonded balls.

Analytical solution of displacement for u=0.0
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Figure 10.3. Application of the Ball3D code on modeling sliding block problem.
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Aplpxelnudli[x A

Proof of negative springin RMIB

The proof of negative shear spring can be based on the potential functions used in MD
simulation. It is known that the Poisson’s ratio of silver is 0.37, which corresponds to
negative shear spring stiffness in the RMIB model. The atomic lattice structure of
sliver isshown in FigureAl.

Shear plane of AB;
Shear plane of AB,

Figure Al. The cubic face-centered lattice (fcc) of silver.

The Finnis-Sinclair potential proposed by Sutton and Chen [1] can be used to describe
silver, which can be written as

(A.1)

Both repulsive and attractive part included in this potential. The repulsive part is
realized by a pair potential, while the attractive part is realized by a many-body
potential. The material dependent parameters n, m,e, ¢ and ¢ are related to the
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material and specific type of lattice. The values of parameters which stand for silver
aregivenin Table Al

Table Al. The set of parameters of Finnis-Sinclair potential for silver.

m

n £

o c |

6

12

2.5415x103%eV

4.09A 144.41 1.21875 A

The potential variation on atom B due to the movement of atom A in different shear
planes (see Figure A1) can be calculated based on Equation (A.1) and the lattice
structure information. The results for silver are shown in Figure A2. It can be seen
that the shape of the potential variation function is exactly of the downward bowl
shape, which indicates that the shear stiffness is negative. This is consistent with the
fact that the Poisson’ sratio of silver is greater than the critical value (0.25 for 3D).
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Figure A2. The variation of potential energy of silver at different atoms.
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Proof of rotation invariant in DL SM

In this appendix, Equation (4.7) used for evaluating the deformation of shear springs
in DLSM is derived. First, consider a cubic unit volume containing a bond connecting
two particles as shown in Figure Al

Trandate term
r .
Rotation term

')_> A/LA Deformation term

Figure B1. Illustration of the deformation of a cubic unit with a bond connecting two particles.

The complete 1% order displacement function of the cubicis

1
u, %alazasx
y=bob1bzb3y (B.1)
u, COC1C2C32

Assuming the center of the block at (x.,Y,,Z ), then its displacement is represented
by
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(B.2)

Subtracting (B.2) from (B.1) gives

(B.3)

Equation (B.3) can be further written as

(B.4)

From (B-4), we have
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o i[9y, du,
Y20 ox oy

J-3ta+a,)

Using the above relations, Equation (B.4) can be transformed into

X cX X XX yz
uy :[DO] cy +[Dl] wy +[D2] W +[D3] gzx (B5)
uz ucz a)z 822 gxy

where
1 00
[D,]=|0 1 ©
0 01
0 Z_Zc _(y_yc)

DJ=|-z-2) 0  x-x
Y=Y _(X_Xc) 0

X=X, 0 0

0 0 z-z

0 z-z y-y.
[Da]=| z-z 0 x-x
y_yc X_XC 0

Denoting the coordinates of the two particles in the cubic as (x,y;,z) and
(%, Y,,2,) and the displacement of them as (u,v,w) and (u,,v,,W,), the
relative displacement vector between the two particlesis

U,y U, — Uy,
Uy, | =] Uy — Uy (B.6)
U,, U,, —U,

and the normal unit vector is

217



X=X
n, !
n |= _yzl—yl (B.7)
nZ
Z-1,
|

where | isthelength of the bond. The relative normal displacement vector is defined
as

n T

u12x u12x nx r]x
n —_

u12y - u12y ny ny (B 8)
n

u122 u122 nz nz

By vector operation, the relative shear displacement vector is obtained as

s n

u12 X u12 X u12 X u12 X u12 X nx nx
s _ n —

U, y | T ulZy = Uy y |~ U, y |~ U, y ny ny ( B. 9)
s n

ulZz u122 u122 ulZz ulZz nz nz

Now, applying the equation (B.5) , the relative displacement vector can be
represented as

Uy, — Uy, X=X 0 0 Exx 0 -4 Y, Y gyz
Uy, —Uy |= 0 Yo=Y 0 Ey Tl &4 0 X=X x
u,, —u, 0 0 Z,—4 )\ &, Yo= % X=X 0 gxy

strain related term

0 -7z (Y= %)\ &

+|—(z,-2) 0 X, — X, w,

=% —(%-%) 0 @,

rotation related term

(B.10)
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With the above equation, it is straightforward to show that the relative normal
displacement vector is only dependant on the strain related term because of the
following equivalence

0 z-2  —(Y,-%)) [ %—%
-(z,- 1) 0 =% | Y=Y [=0
=¥ —(%-x) 0 -2

However, for the relative shear displacement vector, if we directly substitute (B.10)
into (B.9), the rotation related term will not vanish. It is known that rigid rotation of
the cubic should not produce strain energy. Therefore, in DLSM, the rotation related
term isremoved from the calculation of the relative shear displacement vector, namely,
the relative displacement vector in (B.9) is not calculated anymore by using (B.10) or
(B.6), but by the following

a12x X=X 0 0 Exx 0 -4 Y, Y gyz
Upy =] 0 Y=% 0 g1+ 2-2 0  X%-X|&
A12z 0 0 Z,—-74 )\ &, Yo=Y X=X 0 gxy
(B.11)
Exx 2 X=X
= gxy yz y2 yl
Ex z -7
Writing (B.11) in the vector form, we get
0,=[¢]-nl (B.12)

Finally, the relative shear displacement vector (the vector form of (B.9)) can be
written as

Gs =[e]-nl-(([e]-nl)-n)n (B.13)

which is the equation (4.7) in the context.

Moreover, consider one rigid body rotation defined by

u(X) =@xx (B14)
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where @ is the angular displacement vector with components [a)x,wy,wZ]T. By

simple derivation, the true gradient of this displacement field is found to be

Vu=| o 0 -w (B15)

It is obvious that the strain tensor ¢ =(Vu+ VuT)/Z vanishes given the skew nature
of Vu. The least square approximation adopted in DLSM to calculate the gradient of
the displacement field is first-order consistent, i.e., it is able to reproduce any linear
function and its gradient, so the correct skew nature of Vu is kept numerically.
Therefore the calculated strain ¢ is also invariant with respect to the rigid body
rotation.

Ovedl, it is ensured that the DLSM model is rotationaly invariant in the sense that
the strain energy is independent of rigid rotation.
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Appelnudl ix C

Shape functions used in m-DL SM

Table C1. Shape functions and their derivatives at different nodes of the 8-node 3D FEM element.

N, (x,y,2) =1 (x—&)(y;yi)(z— z) N, (% Y,2) = (y- yiza(z— 2)
Ni'y(x,y,z):_% Ni,z(x,y,2)=—(x_)§)é,y_m
N, (xy.2) =1+ (x—x,-)(y;Y,-)(z—z,-) N, (xy,2) = (y- yjz§z—zj)
Ni'y(x,y,z):_% Ni,z(x,y,2)=—(x_)§)é,y_m
N, (x,y,2)=1- (x= Xk)(ylsyk)(Z— z) N, (x:2) =_w
Nk'y(x,y,z)=_w Nkvz(xlylz)z_(x—xk)L(sy—yk)
N, (x,y,2) =1+ (x—&)(ylsy.)(z— z) N, (% y,2) = (y- ylzgz— z)
N,Ax,y,zhw Nl,z(X,y,Z)=(X_X'?_(3y_y')
N, (x,y,2) =1+ (x= xn)(y—Lsym)(Z— Zy) N, (% Y,2) = (y- ym2§2— Z,)
N,,, (%Y, z)=% N (xy,2)= (x—xmz(sy—ym)

221



Nn (X, Y, Z) —1- (X_ Xn)(y;syn)(z_ Zn) Nn,x (X, Y, Z) - _ (y_ ynzgz_ Zn)
n
Nn,y(x’ Y, Z):_% Nn,z(x’ Y, Z):_w
No (X, Y, Z) -1+ (X_ Xo)(y[3yo)(z_ Zo) No,x (X, Y, Z) _ (y_ yoza(z_ Zo)
(0}
No,y (X, Y, Z) — (X_ Xol)_gz_ Zo) No,z (X, Y, Z) — (X_ Xo?_(?’y_ yo)
N, (% :2) :1_(x—xp)(y—Layp)(z—zp) N, . (% :2) :_(y—yngz—zp)
p
R N, (7)<

Note: L isthelength of the cubic element.
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