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A B S T R A C T

The spontaneous crack growth in an infinite domain is studied using the distinct lattice spring model (DLSM).
The kinetic energy, strain energy, crack opening, and crack branching during the crack growth are investigated
numerically using a simple spring model. The discrete simulation satisfactorily reproduces the experimental
observations and the theoretical predictions of the fracture energy increase even without considering the crack
tip damage zone and crack bifurcation. Moreover, from analysis of the intrinsic fracture energy release rate, it
was concluded that the observed fracture energy increase should originate from the distribution of kinetic energy
during self-similar crack growth.

1. Introduction

According to Broberg, dynamic processes in a cracked body fall into
two basic categories: dynamic crack propagation and dynamic loading
of bodies with stationary cracks. Furthermore, virtually all known
analytical solutions to elastodynamic crack propagation problems are
based on either steady-state crack propagation or self-similarity models
[5]. In the steady-state crack propagation model, the crack propagates
at constant velocity, and the mechanical fields are invariant when the
observer moving away or close to the crack tip [5,14]. The two-di-
mensional Yoffe problem refers to crack propagation of a pre-cracked
body under far-field tensile loading [35]. In self-similar crack propa-
gation, two crack tips move symmetrically at constant velocity from the
crack initiation point, and the mechanical fields scale with the crack
length. The steady-state crack propagation model was adopted in the
pioneering paper series authored by Freund [10–13]. The model was
widely accepted in the fracture mechanics community, partially be-
cause of the consistency of the notion of constant fracture energy or
dynamic fracture toughness with that of static fractures. In fact, dy-
namic crack propagation is quite different from its static counterpart.
For example, it was first shown by Rosakis et al. that fracture toughness
continuously varies during crack growth, and thus, the dependence of
fracture toughness on crack velocity was proposed [26]. The notion of
constant fracture energy or dynamic fracture toughness was further
challenged by the experiments performed by Ravi-Chandar and Knauss,
who showed that there is no unique dependence of the fracture
toughness on the propagation velocity [24]. The mystery of dynamic

fracture propagation is thus far from resolved.
The key concept of self-similar crack propagation is that the me-

chanical fields are scaled with the crack length. Based on these as-
sumptions, the time history of the dynamic stress intensity factor for
mode-I self-similar crack propagation was first solved by Broberg [4]
and thus, the problem was also referred to as Broberg’s problem [33].
Subsequently, the analytical solution was further extended to an ani-
sotropic solid [6] and mixed boundary conditions [30]. Contrary to
steady-state crack propagation, in self-similar crack propagation, the
fracture energy increases with the crack length [5]. This notion is in-
consistent with that for static fractures, and as a result, the self-similar
crack propagation model has received much less attention than the
steady-state model.

However, recent progress has been reported on self-similar crack
propagation. Under certain conditions, mode-I spontaneous fracture is
found to be self-similar [33]. The concept of spontaneous fracture stems
from earthquake physics [8,21] in which earthquake ruptures are
modelled as spontaneous mode-II or mode-III fractures. Spontaneous
fractures occur in a statically stressed domain, and after fracture in-
itiation from a point, no external energy is supplied to the domain to
further drive the fracture propagation. In addition to geophysics, the
concept of spontaneous fracture also finds applications in engineering.
Most engineering materials, such as the concretes, rocks, or even steels
used in structures, have initial defects (e.g., microcracks) that are
negligible in size compared with the entire structure, which is usually
subjected to quasi-static loading. The failure of these defects might lead
to a macro-scale catastrophic failure of the entire engineering structure.
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Therefore, a deeper insight into spontaneous crack propagation in so-
lids is necessary to gain a better understanding of catastrophic failure
[31,33,34].

If spontaneous mode-I fracture is initiated away from the boundary
of the domain and the domain is sufficiently large, then at least the
boundary conditions are satisfied for the Broberg’s problem. By mea-
suring the fracture velocity and the dynamic stress intensity factor using
photoelasticity, the mode-I spontaneous fracture without the boundary
effect was proven to be self-similar [33]. Until now, experimental evi-
dence of self-similar mode-I crack propagation or approximately mode-I
self-similar crack propagation has been identified for different mate-
rials, including plastics [3], steel [25], Al/Sicp [22], Homalite-100 and
bonded PMMA [33]. These experimental results further confirm the
Broberg theory for mode-I self-similar crack propagation [32]. As
clearly measured using the photoelastic method [33], the fracture en-
ergy increases linearly with the crack length for mode-I spontaneous
fracture. Thus, the question of interest is posed as follows: What is the
mechanism for the increase in fracture energy? This question cannot be
answered solely by experimental and theoretical means.

Due to the development of computer science, numerical simulation
has become a promising complementary tool for the study of dynamic
fracture problems. Generally, numerical methods can be classified into
continuum-based methods and discrete element and lattice type
methods [17]. Using numerical methods, the first clue to the mystery of
the increase in the dynamic fracture energy was found by Johnson
[18,19], who adopted the finite element method and represented the
fracture process zone as a collection of cells. The numerical results
published by Johnson [19] shown that the mode-I crack enlarges the
process zone size to consume more energy rather than convert the strain
energy into kinetic energy. Under high stresses, off-fault fracturing
might be happen as demonstrated by Poliakov et al. [23] who con-
ducted a numerical simulation of mode-II crack with a slip-weakening
constitutive model.

This research suggested that the increase in the process zone size
might be the mechanism underlying the increase in fracture energy
during earthquake fracture propagation. Later numerical analysis by
Andrews [2] showed in detail that the mode-II crack propagation in
earthquakes is approximately self-similar and that the fracture energy is
approximately proportional to the earthquake rupture length.

In discrete element and lattice type numerical methods such as the
discrete element model (DEM), dynamic fracture can be simulated di-
rectly [36,37]. However, the main limitations of DEM are the de-
termination of micro-scale parameters and the high computational cost
[36]. Recently, the distinct lattice spring model (DLSM) [38] was de-
veloped to overcome these limitations. Many discrete element and
lattice type numerical models are available, such as the Discrete Ele-
ment Model (DEM) [7] and Peridynamics developed by Silling [27].
The Distinct Lattice Spring Model (DLSM) is an extension of the clas-
sical LSM [16] that was developed to overcome Poisson's limitation
from introducing a multi-body shear spring. Certain literature reports
are available on both the theories of and experiments on self-similar
crack growth. However, it is not clear how the crack growth occurs. The
fundamental requirement of such growth is that the fracture energy and
thus the fracture toughness should increase with the crack length,
which contradicts the traditional wisdom that fracture toughness is a
material constant. Discrete element and lattice-type numerical methods
offer a possible approach to further examination of the mechanism of
many fracture phenomena. For example, the relationship between the
crack speed and the creep and relaxation times was studied by [29]
using a triangular lattice, dynamic crack propagation in a brittle ma-
terial was investigated by Abraham [1] using an elastic-brittle triangle
lattice, and crack nucleation was studied by Silling et al. [28] using the
Peridynamics approach. The objective of this work is to further examine
the mechanism of self-similar crack growth using the distinct lattice
spring model (DLSM).

Compared with the classical DEM, the DLSM uses only half of the

degrees of freedom, and therefore, the DLSM is much more computa-
tionally efficient than the DEM. Moreover, by introducing the multi-
body shear spring, the DLSM is able to solve elastic dynamic problems
with a full range of Poisson’s ratio, which makes it a promising tool for
the study of dynamic fracture problems. Indeed, the DLSM has been
successfully applied for dynamic crack propagation in PMMA [20].

In this work, the DLSM was adopted to investigate the self-similar
crack propagation problem. The context is organized as follows. First, a
brief introduction to the DLSM is presented. The computational model
used to simulate self-similar crack growth is described in detail, in-
cluding the model setup, boundary conditions, and material parameter
selection. The applicability of the DLSM to modelling of self-similar
crack growth is proven by comparing the numerical results with the
theoretical and experimental results from the crack speed of a self-si-
milar crack and crack opening displacement (COD). The histories of the
kinetic energy, strain energy, and damage zone around the crack tip are
investigated numerically. Together with the numerical simulation re-
sults and the theoretical and experimental observations, selected con-
clusions on self-similar crack growth are derived.

2. Distinct Lattice Spring Model (DLSM)

The basic idea of the DLSM is to represent a solid using a group of
mass particles with different sizes (for contact detection purpose) linked
by the bonds of normal and shear springs. The major feature of the
DLSM is that a multi-body shear spring was introduced to address the
limitation of Poisson’s ratio in classical lattice spring models [38]. Fig. 1
shows the corresponding computational model, calculation cycle, par-
ticle forces, and constitutive model in the DLSM. The lattice model is
formed by linking two particles with a gap smaller than a given
threshold value (see Fig. 1a).

The equation of motion of the mass particles and lattice network can
be represented as

+ + = tK u C u M u F[ ] [ ] ̇ [ ] ¨ ( ) (1)

where u represents the vector of particle displacement, K[ ] is the
stiffness matrix, M[ ] is the diagonal mass matrix, C[ ] is the damping
matrix, and tF( ) is the vector of external force. In the DLSM, Eq. (1) is
solved using the explicit central finite difference scheme. One calcula-
tion cycle is shown in Fig. 1b. Given the particle displacements, new
contacts and broken bonds are detected. Particle forces (see Fig. 1c) can
be obtained from the contact and spring forces between particles, which
are updated according to the force-displacement relations, as shown in
Fig. 1d. The particle velocity is obtained as

= +
∑+ −

m
tu u

F
̇ ̇ Δi

t t
i
t t j

t

p

( Δ /2) ( Δ /2)
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(2)

where +u̇i
t t( Δ /2) is the particle velocity at +t tΔ /2, −u̇i

t t( Δ /2) is the particle
velocity at −t tΔ /2, mp is the particle mass, ∑ F j

t( ) is the sum of contact
forces acting on the particle i including applied external forces, and tΔ
is the time step. Finally, the new displacement of the particle is cal-
culated as

= ++ + tu u u̇ Δi
t t

i
t

i
t t( Δ ) ( ) ( Δ /2) (3)

where +ui
t t( Δ ) is the displacement at +t tΔ , and ui

t( ) is the displacement
at t .

In the DLSM, the normal spring was implemented as in the classical
lattice spring model. For a bond that connects particle i and particle j,
the normal unit vector = n n nn ( , , )x y z

T pointing from particle i to par-
ticle j is defined. The relative displacement between two particles can
be obtained as

= −u u uij j i (4)

The normal deformation of the spring is defined as

=u u n n( • )ij
n

ij (5)
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The normal force between the two particles is given as

= kF uij
n

n ij
n

(6)

where kn is the stiffness of the normal spring.
The shear spring was introduced to model the multi-body non-

central interaction. The relative shear deformation is calculated using a
local strain method as

̂ = −ε εl lu n n n n[ ] (([ ] )• )ij
s

bond bond (7)

where l is the initial bond length, = +ε[ ]bond
ε ε[ ] [ ]

2
i j is the strain state of

the connecting bond, and the strains at the two particles are represented
as ε[ ]i and ε[ ]j, which are evaluated using a least squares method [38].
The shear force between the two particles is given as

̂= kF uij
s

s ij
s

(8)

where ks is the stiffness of the shear spring.
The constitutive model used in the DLSM is shown in Fig. 1d. For the

tensile loading conditions considered in this work, only the failure of a
normal spring is considered. When the normal displacement of the bond
exceeds the prescribed value, the bond is broken and becomes a contact
(a normal spring with zero strength). For elastic brittle problems, only
one failure parameter exists in the DLSM, and this parameter can be
easily calibrated. For static problems, the mechanical damping [38] is
used, which can be written as

∑ ∑= + −+ − −α t
m

u u F F u̇ ̇ { | |sgn( ̇ )}
Δ

i
t t

i
t t

j
t

j
t

i
t t

p

( Δ /2) ( Δ /2) ( ) ( ) ( Δ /2)

(9)

where α is the damping constant (set to 0.2 in this paper). Additional
details on the DLSM can be found in Ref. [38].

3. Numerical model for “self-similar growth”

The DLSM is used to simulate the ideal “self-similar” crack growth
test conducted by Xia et al. [33]. The test setup is illustrated in Fig. 2.
An exploding wire technique was used to initiate the spontaneous dy-
namic fracture (see Fig. 2a). During the test, the far-field quasi-static
tensile loading was first loaded to a desired stress level, and the stored
strain energy drove the subsequent dynamic crack propagation trigged
by the explosion. A high-speed camera was used to capture the real-
time isochromatic fringe patterns (see Fig. 2b), which were subse-
quently used to obtain the crack-tip position, crack propagation velo-
cities, and dynamic stress intensity factor [33].

3.1. Numerical model

The key to the numerical simulation using the DLSM is to load the
sample statically and initiate the dynamic fracture propagation in the
centre of the sample. A two-stage calculation scheme is adopted (see
Fig. 3). In the first stage (Fig. 3a), a static calculation with mechanical
damping was performed, and the displacement field was recorded to a
file. In the second stage, this file was inputted as the initial condition for
the dynamic calculation. Note that the boundary conditions of the two
stages are different (see Fig. 3b).

For the static loading, a tensile force was applied on the top surface

Particle Forces

Contact Force 
Update

Relative Contact 
Displacements

Particle Motion 
Update

Fig. 1. Basic principle of the DLSM [38].
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of the specimen, whereas the top surface was fixed in the dynamic
calculation to ensure that the model is an isolated one. The computa-
tional model is shown in Fig. 3c. A thin-layer model was used to si-
mulate the plane stress problem using the DLSM (a three-dimensional
code). To save computational time, only two layers of particles exist
along the out-of-plane direction. The dimensions of the numerical
specimen are 300mm×300mm. The numerical specimen consists of
180,000 particles with a diameter of 1mm (see Fig. 3c). Note that the
particle size in the DLSM is much larger than the actual molecular size
of Homalite-100. The main purpose of the larger particle size is to re-
duce the computational time and to replace the complex molecular
potential function with a simplified spring constitutive law. As shown in
Fig. 3c, the particle is nearly invisible at the model scale. To show the
pre-crack surface and the actual particle, an enlarged 3D view is pre-
sented in Fig. 3d. The pre-crack surface was formed by cutting the
spring bonds that intersect the crack surface, which results in sponta-
neous dynamic fracture, as required in the ideal “self-similar” crack
growth test. The following material parameters were taken from [33] to

represent Homalite-100: Young’s modulus of 3860MPa, Poisson’s ratio
of 0.35, and density of 1230 kg/m3.

3.2. Crack speed

In this section, the DLSM is verified against the experimental and
theoretical results presented in Ref. [32]. The theoretical relationship
between the crack speed and the loading parameter is shown in Fig. 5,
as modified from Ref. [32]. Mathematically, the relationship is re-
presented as

⎜ ⎟= ⎛
⎝

⎞
⎠

∞σ
σ

f V
CR0 (10)

where ∞σ is the far-field quasi-static tensile loading, σ0 is an un-
determined parameter related to the cohesion strength [15], V is the
crack speed, and CR is the Rayleigh wave speed. Details of the mathe-
matic expression of f can be found in the literature [32]. In this work,
for numerical modelling using the DLSM, the loading parameter is

(a) Experimental set up

(b) Isochromatic fringes of propagating crack in Homalite-100
Fig. 2. Ideal “self-similar” crack growth test conducted by Xia et al. [31,33].
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further expressed as

= =
∞ ∞ ∞σ

σ
σ E
σ E

ε
ε

/
/0 0 0 (11)

where E is the elastic modulus, and ∞ε is the uniform quasi-static strain
that can be calculated as =∞ ∞

ε u
L in the DLSM. In the above expression,

∞u is the pre-applied tensile deformation at the top surface, L is the
model size, and ε0 is the cohesion strain related parameter given by

=
∗

ε
u
λd

n
0 (12)

where λ is a scale parameter, d is the particle size (1 mm), and ∗un is the
ultimate deformation of the spring bond.

Substituting Eq. (12) into Eq. (11), the loading coefficient can be
expressed as

=
∗

∞ ∞σ
σ

λ u L
u d

/
/n0 (13)

The parameter λ can be determined from the crack speed predicted by
the numerical simulation and the corresponding input material para-
meters as = ∗

∞λ f ( )u
u L

V
C/

n
R

(in this work, =λ 3). Fig. 4 shows a numerical
simulation of self-similar crack growth using the DLSM
( ∗ =u 0.012 mmn ).

The crack speed is obtained from a linear fitting of the history of the
half crack length over time. Different loading parameters and crack
speeds can be obtained by setting different tensile failure parameters

∗un . The results predicted using the DLSM are plotted in Fig. 5 together
with the theoretical and experimental results [32]. The numerical re-
sults agree well with the theoretical and experimental results. In this
work, the plot of the relation between fracture energy and the crack
length is plotted as the total length of the crack such that the slope
directly corresponds to the fracture energy release rate. Additionally,
when a figure is used to indicate the crack propagation, a half crack is
preferable such that the slope directly corresponds to the crack speed.

In a discrete simulation, the particle size should be treated as a

Homalite-100

σ ∞

Pre-crack

(a) 1st stage: static equilibrium (b) 2nd stage: dynamic analysis

(c) Computational model (d) Enlarged 3D view on the pre-crack

Fig. 3. Numerical model of the ideal “self-similar” crack growth test using the DLSM.
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relative parameter, and its influence on the simulation depends on the
scale of the problem. In Fig. 5, discrete models with different pre-crack
lengths (problem size) were used to model self-similar crack growth.
The results are found to be similar, and the current choice of particle
size is sufficiently small. Therefore, the physical reality of the

simulation is influenced by the particle size chosen in the current work.

3.3. Crack opening displacement

In fracture mechanics, the stress intensity factor can be obtained
using the displacement extrapolation method

=
→

K A COD r
r

lim ( )
I

r 0 (14)

where A is a constant related to the elastic modulus and Poisson’s ratio,
r is the distance from the crack tip, and COD r( ) is the crack tip opening
displacement at r. The crack tip opening displacements of a numerical
model ( =∞u 0.7 mm, ∗ =u 0.012 mmn , pre-crack length=20mm) are
shown in Fig. 6.These COD curves are found to be self-similar. As-
suming a state with a half-crack length of 1mm, the corresponding
stress intensity factor is

=
→

K A COD r
r

lim ( )
I

r
0

0

0 0

00 (15)

If the half-crack length is x, using the variable substitution method and
the COD function in Fig. 6, the stress intensity factor can be calculated
as

= = =
→ →

K A COD r
r

A xCOD r
xr

x Klim ( ) lim ( )
I
x

r

x

x r
I

0 0

0 0

0
0

x 0 (16)

(a) t = 3 μs (b) t = 30 μs

(c) t = 51 μs (d) t = 81 μs

Fig. 4. “Self-similar” crack growth pre-
dicted by the DLSM (red colour refers to
broken particles). (For interpretation of the
references to colour in this figure legend,
the reader is referred to the web version of
this article.)

Fig. 5. Comparison of the numerical results using the DLSM and the theoretical and ex-
perimental results [32].
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Eq. (16) is written in the same form as Eq. (4) in Ref. [33], but it is
based solely on the numerical observation. This result indicates that the
stress intensity factor reproduced by the DLSM also agrees with the
theoretical and experimental observations [33].

From the above results, it is concluded that the DLSM is able to
model the self-similar crack growth problem. Note that the numerical
results obtained using different pre-crack lengths do not change the
results (see Fig. 5). This observation is consistent with the concept of
self-similar crack growth. Because the size of the crack is a relative
value from the perspective of the observer, the initial crack becomes
smaller as the observer moves away from the centre point. However,
the crack speed should not change. In the following, the DLSM is further
used to obtain deeper insight into self-similar crack growth.

4. Numerical results and discussion

4.1. Fracture energy analysis

4.1.1. Crack propagation is not permitted
The spontaneous fracture induces stress waves in the model. If the

normal failure parameter is sufficiently large, then crack propagation
cannot be initiated. As shown in Fig. 7, the pre-crack generates both P
and S waves from the crack tip that propagate to the model boundary.
This wave propagation induces a variation in the kinetic energy within
the model. Two characteristic times are used in the modelling: the first
time is the arrival of the P wave at the model boundary (66.8 µs), and
the second time is the arrival of the reflected P wave back at the crack
surface (133.8 µs).

The modelling results before the first characteristic time fully satisfy
the conditions (crack growth and energy distribution) of self-similar
crack growth. Before the second characteristic time, the reflected wave
does not interact with the crack. The crack growth should be the same
as that of a self-similar crack, whereas the energy should not be the
same. After the second characteristic time, both the crack growth and
the energy distribution are affected.

To show the change in the kinetic energy of the model, the pre-crack
induced kinetic energy of the model for pre-cracks of different lengths is
shown in Fig. 8. A longer pre-crack length induces a larger kinetic en-
ergy (see Fig. 8). Before the arrival of the induced wave at the model
boundary, the kinetic energy enters a relatively stable range.Fig. 9
shows the results of the calculations of the strain energy in these
models. The released strain energy of a model is defined as

= −U t U U tΔ ( ) ( )0 (17)

where U 0 is the total strain energy of the model before cracking, and
U t( ) is the strain energy of the model at time t. Fig. 10 shows the results
of the released energy of models with different pre-crack lengths at

different times under the static condition (mechanical damping is ap-
plied). At the initial stage (t= 0 µs), the released strain energy is pro-
portional to the length of the pre-crack, whereas a quadratic relation-
ship with the length of the pre-crack is observed at t= 12, 47, and
147 µs for a group of roughly dynamic stable values (see
Fig. 10).Because the fracture energy defined by the strain energy re-
lease rate is given as

=
∂

G U
L

Δ
(18)

the fracture energy release rate G of the quadratic fitting in Fig. 10 is a
linear function of the crack length. The intrinsic fracture energy should
be defined as

= −U t U t E tΔ ( ) Δ ( ) ( )FI (19)

where E t( ) is the kinetic energy of the model at time t. For a closed
system without any cracks, the fracture energy should be zero, and for a
cracked system, the energy is purely due to the presence of the crack.
Therefore, we refer to this quantity as the intrinsic fracture energy. The
variation in the intrinsic fracture energy of the models with different
pre-crack lengths is shown in Fig. 11. It should be mentioned that the
strain energy lost when t= 0 is due to the spontaneous cut of the pre-
crack. Under the static condition, the intrinsic fracture energy is equal
to the released strain energy. The intrinsic fracture energy under the
dynamic condition is much less than the released strain energy. After
the stable time instances (t= 12, 47, and 147 µs), the intrinsic fracture
energy is nearly negligible.

4.1.2. Crack propagation is permitted
When crack propagation is allowed ( =∗u 0.012 mmn ), the strain and

kinetic energies of the model with a pre-crack length of 20mm are il-
lustrated in Fig. 12. The released energy of the model is shown in
Fig. 13. The released strain energy can be fitted using a power function
as

=U t aLΔ ( ) b (20)

The fitting coefficient b is 2.024.
In this work, the reason for the choice of DLSM is that it is a nu-

merical model based on basic physical theorems, i.e., Newton’s second
law and Hooke’s law, and therefore, the simulation results based on the
model are simpler and more straightforward. The analysis in Section
3.3 reproduces the increase in the critical intensity factor (corre-
sponding to the fracture energy release rate G) obtained from photo-
elastic analysis in the experiment of Xia et al. [31,33]. In this section,
the corresponding fracture energy release rate G of the numerical si-
mulation is roughly proportional to the crack length, which is con-
sistent with the observation of Xia et al. [31,33] as well. Because our
numerical simulation did not consider the crack tip damage zone and
crack bifurcation, we conclude that the damage zone and crack
branching observed in the experiment might not be the source of the
fracture energy increase. Moreover, as shown in Fig. 13, the intrinsic
fracture energy release rate of the model is constant. Together with the
definition of the intrinsic fracture energy (Eq. (19)), the observed
fracture energy increase should originate from E(t), i.e., the distribution
of kinetic energy during self-similar crack growth.

4.2. Energy dissipation under different far-field loadings

In the verification section, the loading parameter was adjusted by
changing the material parameter ∗un , whereas the far-field loading ∞u
was held constant at 0.7 mm. In this section, the far-field loading was
reduced to 0.35mm. To obtain the same loading parameter, the ma-
terial parameter was reduced to 0.006mm. According to the theoretical
prediction of self-similar crack growth, the crack speed predicted by the
two numerical simulations should be the same. Our simulation results
reproduced this phenomenon successfully (Fig. 14). The half-crack

Fig. 6. Crack opening displacement of self-similar crack growth predicted using the DLSM
( =∗u 0.012 mmn , pre-crack length=20mm).
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lengths of two models at different times are coincident with each other.
The released strain energies are also plotted in the same figure, and
from the figure, a significant difference can be observed. The ratio
between the released energy is 0.25 (square of the ratio of the far-field
loading). From geometric scaling, the ratio between the intrinsic

fracture energy release rate of the two models is also 0.25. From the
numerical results, we can also conclude that for self-similar crack
growth, the loading parameter should be treated as a model constant
rather than the fracture energy release rate or intrinsic fracture release
rate.

(a) t = 12 μs (b) t = 42 μs

(c) t = 72 μs (d) t = 147 μs

Fig. 7. Strain wave induced by the spontaneous crack in a pre-loaded specimen.

Fig. 8. Kinetic energy of models with different pre-crack lengths (crack propagation not
allowed).

Fig. 9. Strain energy of models with different pre-crack lengths (crack propagation not
allowed).
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4.3. Crack tip damage zone and crack branching

In the experimental observation, a damage zone exists around the
crack tip of the self-similar crack growth. It was considered that the
change in the size of the damage zone is the reason for the increase in

the fracture energy [32]. In the numerical simulation, similar phe-
nomena are also observed. For the model shown in Fig. 4, when the
time exceeds 72 μs, a damage zone is observed around the crack tip
(Fig. 15a). The increase in the damage zone of dynamic fracture has
been observed in experiments and numerical simulations. For example,
James Rice demonstrated this phenomenon using numerical simulation
of a mode-II dynamic fracture [9]. The physical reason for the increase
in the damage zone is that extra strain energy is available to drive the
crack, and if the crack velocity remains the same, then the increase in
damage is the only possible way to consume such energy.

This damage zone further leads to crack branching, as shown in
Fig. 15b and c. However, this damage zone might not be the reason for
the constant crack speed. As shown in Fig. 16, the crack half-length
(mapped in the x direction) remains nearly unchanged before and after
crack branching. Therefore, according to the numerical simulation, the
damage zone or the change in the failure pattern does not influence the
numerically observed crack speed.

The above observation is consistent with the self-similar crack
growth theory. When the observer moves away from the centre point,
any branching or damage zone becomes negligible in size, and thus, the
fracture can still be treated as a straight line.

In fact, self-similarity is expected for an ideal crack based on the
assumption that the crack path is one-dimensional. This assumption is
reasonable because the width of the damage zone is negligible

Fig. 10. Relationship between the released strain energy and the pre-crack length.

Fig. 11. Relationship between the released intrinsic fracture energy and the pre-crack
length.

Fig. 12. Kinetic and strain energy of a model with a pre-
crack length of 20mm when crack propagation is allowed.

Fig. 13. Relationship between the released strain energy, intrinsic fracture energy and
crack length (the pre-crack length is 20mm).
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compared with the crack length. The similarity of the crack growth is
thus not broken, and this fact was confirmed by the discrete simulation
conducted in this work.

In our numerical simulation of the self-similar crack propagation,
the initial intrinsic fracture energy is linear with pre-crack length due to
the cutting procedure removes the spring bonds together with the
stored strain energy. This amount of energy will trigger the strain en-
ergy redistribution within the cracked body and kinematic energy as
well. Because large portion of this trigger energy turns into kinetic
energy, the intrinsic fracture energy during self-similar crack growth is
actually relatively small compared with the strain energy released
under static loading condition. From further analysis, the numerically
observed fracture energy increase is also found to be irrelevant to the
enlargement of the damage zone around the crack tip. Therefore, we
concluded that the fracture energy increase is a result of natural process
in the self-similar crack growth: that is the kinetic and strain energy
redistribution.

Fig. 14. Results of the half-crack length and the released
strain energy of two models with different far-field
loading.

(a) t = 75 μs

(b) t = 87 μs (c) t = 255μs

Fig. 15. Damage zone around the crack tip and crack branching.

Fig. 16. Half-crack length in the x direction for “self-similar” crack growth considering
the damage zone around the crack tip and crack branching.
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5. Conclusions

In this work, the DLSM is used to study “self-similar” crack growth.
In a comparison between the numerical simulation and the corre-
sponding theoretical and experimental results, the DLSM is found to be
able to reproduce the essential information of self-similar crack growth,
such as the relationship between the crack speed and the loading
parameter. Moreover, the dynamic stress intensity factor and fracture
energy release are also successfully captured by the DLSM. Finally, it is
concluded that the fracture energy increase in self-similar crack growth
is a macroscopic result of the meso-scale spring bond breakage-induced
kinetic and strain energy redistribution. The damage zone and crack
branching might not be the reason for the fracture energy increase.
Obtaining a deeper understanding of the physics of self-similar growth
is the main purpose of this work. To this end, the DLSM appears to be a
useful tool for further exploration of the physics of self-similar crack
growth.

Acknowledgments

This research is financially supported by National Natural Science
Foundation of China (Grant No. 1177020290).

References

[1] Abraham FF. Unstable crack motion is predictable. J Mech Phys Solid
2005;53(5):1071–8.

[2] Andrews DJ. Rupture dynamics with energy loss outside the slip zone. J Geophys
Res-Sol Ea 2005;110:B01307.

[3] Beebe WM. An experimental investigation of dynamic crack propagation in plastic
and metals, Air Force Materials Laboratory Technical Report; 1966.

[4] Broberg KB. The propagation of a brittle crack. Ark Fys 1960;18:159–92.
[5] Broberg KB. Cracks and fracture. San Diego: Academic Press; 1999.
[6] Burridge R, Willis JR. Self-similar problem of expanding elliptical crack in an ani-

sotropic solid. Proc Camb Philos S-M 1969;66:443–68.
[7] Cundall PA, Strack ODL. Discrete numerical model for granular assemblies.

Geotechnique 1979;29(1):47–65.
[8] Das S, Boatwright J, Scholz CH. Earthquake source mechanics, geophysical mono-

graph, vol. 37. Washington: American Geophysical Union; 1988. p. 341.
[9] Falk ML, Needleman A, Rice JR. A critical evaluation of dynamic fracture simulation

using cohesive surfaces. J de Phys IV Proc 2001:43–50.
[10] Freund LB. Crack-propagation in an elastic solid subjected to general loading. 1.

Constant rate of extension. J Mech Phys Solids 1972;20:129–40.
[11] Freund LB. Crack-propagation in an elastic solid subjected to general loading. 2.

Nonuniform rate of extension. J Mech Phys Solids 1972;20:141–52.
[12] Freund LB. Crack-propagation in an elastic solid subjected to general loading. 3.

Stress wave loading. J Mech Phys Solids 1973;21:47–61.
[13] Freund LB. Crack-propagation in an elastic solid subjected to general loading. 4.

Obliquely incident stress pulse. J Mech Phys Solids 1974;22:137–46.
[14] Freund LB. Dynamic fracture mechanics. New York: Cambridge University Press,

Cambridge; 1990.
[15] Gao HJ. A theory of local limiting speed in dynamic fracture. J Mech Phys Solids

1996;44:1453–74.
[16] Hrennikoff A. Solution of problems of elasticity by the framework method. ASME J

Appl Mech 1941;8:A619–715.
[17] Jing L. A review of techniques, advances and outstanding issues in numerical

modelling for rock mechanics and rock engineering. Int J Rock Mech Min
2003;40:283–353.

[18] Johnson E. Process region changes for rapidly propagating cracks. Int J Fract
1992;55:47–63.

[19] Johnson E. Process region influence on energy-release rate and crack-tip velocity
during rapid crack-propagation. Int J Fract 1993;61:183–7.

[20] Kazerani T, Zhao G-F, Zhao J. Dynamic fracturing simulation of brittle material
using the Distinct Lattice Spring Model (DLSM) with a full rate-dependent cohesive
law. Rock Mech Rock Eng 2010;43:717–26.

[21] Kostrov BV, Das S. Principles of earthquake source mechanics. Cambridge, New
York: Cambridge University Press; 1988.

[22] Ling Z, Shen L. Microcracks propagation in one Al/SiCp under impact loading. J
Phys IV 2006;134:957–64.

[23] Poliakov ANB, Dmowska R, Rice JR. Dynamic shear rupture interactions with fault
bends and off-axis secondary faulting. J Geophys Res-Sol Ea 2002;107:2295.

[24] Ravichandar K, Knauss WG. An experimental investigation into dynamic fracture:
III. On steady-state crack-propagation and crack branching. Int J Fracture
1984;26:141–54.

[25] Ravichandran G, Clifton RJ. Dynamic fracture under plane-wave loading. Int J
Fracture 1989;40:157–201.

[26] Rosakis AJ, Duffy J, Freund LB. The determination of dynamic fracture-toughness of
Aisi 4340 steel by the shadow spot method. J Mech Phys Solids 1984;32:443–60.

[27] Silling SA. Reformulation of elasticity theory for discontinuities and long-range
forces. J Mech Phys Solids 2000;48:175–209.

[28] Silling SA, Weckner O, Askari E, Bobaru F. Crack nucleation in a peridynamic solid.
Int J Fract 2010;162. 219-217.

[29] Slepyan LI, Ayzenberg-Stepanenko MV. Some surprising phenomena in weak-bond
fracture of a triangular lattice. J Mech Phys Solid 2002;50:1591–625.

[30] Willis JR. Self-similar problems in elastodynamics. Philos Trans R Soc A
1973;274:435–91.

[31] Xia K, Chalivendra VB, Rosakis AJ. Spontaneous mixed-mode fracture in bonded
similar and dissimilar materials. Exp Mech 2006;46:163–71.

[32] Xia K, Liu C, Kanopoulos P. On the energy of dynamic fractures. Int J Nonlin Sci
Numer 2012;13:117–22.

[33] Xia KW, Chalivendra VB, Rosakis AJ. Observing ideal “self-similar” crack growth in
experiments. Eng Fract Mech 2006;73:2748–55.

[34] Xia KW, Rousseau CE, Rosakis A. Experimental investigations of spontaneous bi-
material interfacial fractures. J Mech Mater Struct 2008;3:173–84.

[35] Yoffe EH. The moving Griffith crack. Philos Mag 1951;42:739–50.
[36] Zhang X-P, Wong LNY. Crack initiation, propagation and coalescence in rock-like

material containing two flaws: a numerical study based on bonded-particle model
approach. Rock Mech Rock Eng 2013;46:1001–21.

[37] Zhao G-F. Developing a four-dimensional lattice spring model for mechanical re-
sponses of solids. Comput Meth Appl Mech Eng 2017;315:881–95.

[38] Zhao G-F, Fang J, Zhao J. A 3D distinct lattice spring model for elasticity and dy-
namic failure. Int J Numer Anal Met 2011;35:859–85.

G.-F. Zhao, K. Xia Computers and Geotechnics xxx (xxxx) xxx–xxx

11

http://refhub.elsevier.com/S0266-352X(17)30295-1/h0005
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0005
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0010
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0010
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0020
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0025
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0030
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0030
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0035
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0035
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0040
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0040
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0045
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0045
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0050
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0050
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0055
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0055
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0060
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0060
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0065
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0065
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0070
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0070
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0075
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0075
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0080
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0080
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0085
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0085
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0085
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0090
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0090
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0095
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0095
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0100
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0100
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0100
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0105
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0105
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0110
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0110
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0115
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0115
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0120
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0120
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0120
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0125
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0125
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0130
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0130
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0135
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0135
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0140
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0140
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0145
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0145
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0150
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0150
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0155
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0155
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0160
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0160
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0165
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0165
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0170
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0170
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0175
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0180
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0180
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0180
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0185
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0185
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0190
http://refhub.elsevier.com/S0266-352X(17)30295-1/h0190

	A study of mode-I self-similar dynamic crack propagation using a lattice spring model
	Introduction
	Distinct Lattice Spring Model (DLSM)
	Numerical model for “self-similar growth”
	Numerical model
	Crack speed
	Crack opening displacement

	Numerical results and discussion
	Fracture energy analysis
	Crack propagation is not permitted
	Crack propagation is permitted

	Energy dissipation under different far-field loadings
	Crack tip damage zone and crack branching

	Conclusions
	Acknowledgments
	References




