INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS
Int. J. Numer. Anal. Meth. Geomech. (2011)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/nag.1085

Parallelization of the distinct lattice spring model

Gao-Feng Zhao'* ', Jiannong Fang”, Liang Sun® and Jian Zhao®

'School of Civil and Environmental Engineering, The University of New South Wales (UNSW), Sydney, Australia
2Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory of Engineering and Environmental Geology, Station
18, CH-1015 Lausanne, Switzerland
3Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory of Rock Mechanics, Station 18, CH-1015 Lausanne,
Switzerland

SUMMARY

The distinct lattice spring model (DLSM) is a newly developed numerical tool for modeling rock dynamics
problems, i.e. dynamic failure and wave propagation. In this paper, parallelization of DLSM is presented. With
the development of parallel computing technologies in both hardware and software, parallelization of a code is
becoming easier than before. There are many available choices now. In this paper, Open Multi-Processing
(OpenMP) with multicore personal computer (PC) and message passing interface (MPI) with cluster are selected
as the environments to parallelize DLSM. Performances of these parallel DLSM codes are tested on different
computers. It is found that the parallel DLSM code with OpenMP can reach a maximum speed-up of 4.68 x on a
quad-core PC. The parallel DLSM code with MPI can achieve a speed-up of 40.886x when 256 CPUs are used
on a cluster. At the end of this paper, a high-resolution model with four million particles, which is too big to
handle by the serial code, is simulated by using the parallel DLSM code on a cluster. It is concluded that the
parallelization of DLSM is successful. Copyright © 2011 John Wiley & Sons, Ltd.

Received 30 August 2010; Revised 24 June 2011; Accepted 28 June 2011

KEY WORDS: parallelization; 3D model; lattice spring model; OpenMP; MPI

1. INTRODUCTION

Dynamic fracturing of heterogeneous materials such as rock and concrete cannot be modeled
realistically without appealing to their microstructures. However, the classical mesh-based numerical
methods, e.g. FEM, are difficult to use in building such kind of complex geometry model, especially in
three-dimensional (3D) cases. The distinct lattice spring model (DLSM) [1] is a 3D particle-based
model proposed to solve dynamic fracturing problems involved in rock mechanics and rock
engineering. DLSM has advantages of representing the diversity of Poisson’s ratio, directly using
macroscopic parameters and allowing general lattice structures to be adopted. To solve engineering
problems at large scales, a large number of particles have to be used. In this case, the simulation
becomes demanding in terms of memory and computing time and cannot be performed using a normal
personal computer (PC). However, this problem can be overcome through parallel implementation of
the DLSM code, which will be presented in this paper. The basic idea of parallelization is to distribute
computations to several processors and to execute the distributed works simultaneously. The
implementation of a parallel code is much different from that of a serial code. Fortunately, with the
development of technologies in computer science, this is becoming easier and easier. So far, there exist
three popular choices for parallel computing. The first choice is the multicore PC. The quad-core CPU

*Correspondence to: Gao-Feng Zhao, School of Civil and Environmental Engineering, The University of New South
_Wales (UNSW), Sydney, Australia.
'E-mail: gaofeng.zhao@unsw.edu.au

Copyright © 2011 John Wiley & Sons, Ltd.

G.-F. ZHAO ET AL.

is very common now, and even the 80-core CPU prototype has already been developed [2]. So
performing parallel computation in PC is no longer just a dream. Graphics processing unit (GPU)
computing [3] is the second choice. It has been reported that more than 100x speed-up is achieved by
using GPU for some applications [4]. The last choice is the computer cluster, which is available in
many universities and research institutes. Cluster is a high-level parallelization system [5] that is made
of many computer nodes (each node could be a multicore or GPU computer). In this paper, instead of
giving a verbose review on the parallel computer history like the classification made by Flynn in 1966
[6], a review on the three parallel computer systems mentioned above and the corresponding software
development environments will be presented. The reason is that these three choices are the currently
available and popular solutions for parallelization implementation.

Personal computer refers to any general-purpose computer whose size and capabilities are small and
whose price is low enough to make it acceptable to individuals. PC is also called a microcomputer,
which means that its computing power is much less than a supercomputer. However, with the
development of computer hardware and software, the PC nowadays becomes the dominant tool in
performing scientific computing and numerical modeling. The main reason is that the application
software and operation system in the PC are much friendly to users. Another reason is that with the
improvement of the CPU and the memory used in PCs, some engineering problems can also be solved
on a normal PC. For example, a laptop equipped with a 2-GHz CPU and 2GB of memory is enough to
run DLSM with a half million particles. Recently, a new term, personal high-performance computing
(PHPC) [7], is proposed. PHPC aims to use a normal PC in running problems that previously could
only be handled on a supercomputer. This may become true in the near future if the 80-core CPU and
the 64-bit operation system are mature enough. The future PC, equipped with an advanced multicore
processor, will surely provide adequate computing power and memory space for scientific computing.
The multicore processor aims at providing better performance. It includes multiple execution units,
and the instructions per cycle can be executed separately in different cores. The typical structure of a
quad-core processor is shown in Figure 1. The advantage of the multicore PC is that it can handle
multiple tasks at the same time. The amount of gained performance by using the multicore processor is
strongly dependent on the code implementation. Many typical applications, however, do not consider
parallelization on a multicore PC, which remains to be an important on-going topic for research.
Fortunately, parallel programming environments such as OpenMP [8], pThreads [9] and threading
building blocks [10] can be used to implement the multicore version of an existing code. Normally, the
parallelization of a code on a multicore PC is relatively simple, as it only needs to deal with the shared
memory environment. It does not need to consider the task distribution and communication between
different processors. For multicore PCs, the OpenMP has widely been used to parallelize different
numerical codes; for example, Tarmyshov and Muller-Plathe [11] applied it to parallelize the
molecular dynamics (MD) for chemical simulation, Zsaki [12] used it to speed up the generation
process of the discrete element method (DEM) for geomechanics, Gao and Schwartzentruber [13]
applied it on the Monte Carlo simulation for fluid mechanics and Williams et al. [14] adopted it to
parallelize smoothed particle hydrodynamics for fluid flow problems. However, there also exist some

Figure 1. The diagram of a generic quad-core processor.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2011)
DOI: 10.1002/nag

PARALLELIZATION OF THE DISTINCT LATTICE SPRING MODEL

disadvantages of a multicore processor [15,16]. First, adjustments of the existing code are required to
allow maximum utilization of the computing resources. Second, it is more difficult to manage the
thermal problem than using a single-chip design. Third, a multithread code often requires complex
coordination of threads and makes it difficult to find bugs. Moreover, the interaction between different
threads can also cause safety problems. Even so, our experience tells us that parallel computing using a
multicore processor is stable and promising, at least for research purpose. In this paper, the multicore
implementation of DLSM will be presented, and its performance will be tested in multicore PCs.
Recently, GPU computing [3] is becoming an interesting topic in high-performance computing. The
most attractive aspects of this new technology are the extremely high speed-up for some scientific
computing problems and the price of a GPU computer system, which is much cheaper than a
supercomputer. GPU was originally used as a specialized processor to deal with 3D graphics
rendering. Very recently, a new concept, general purpose GPUs, was proposed to allow the GPU to
perform massive floating-point computing. The basic idea of GPU is to put a large number of specified
computing units on a single board and interpret hundreds of thousands of threads. These threads can
deal with the calculation simultaneously. The architecture of a typical GPU computing card [17] is
shown in Figure 2. It has 128 thread processors, and each thread processor has a single-precision floating-
point unit and 1024 registers. These thread processors could process different data at the same time. The
framework of memory communication is also different from the conventional parallel computer and could
largely increase the parallel efficiency; for example, 100 x speed-up is achieved when the shared memory
scheme is used [3]. There are different kinds of available tools for developing a GPU-based code. They are
OpenGL[18], OpenCL [19] and some special programming toolkits for GPU computing which are listed
by Elsen et al. [20] as Sh (Michael McCool, University of Waterloo), Brook (Pat Hanrahan, Stanford
University), CUDA (NVIDIA), and CTM (AMD). These toolkits provide a very useful environment for
the development of a GPU code. They have been widely used by researchers; for example, Anderson et al.
[21] used CUDA to develop GPU-based MD code, Elsen et al. [20] adopted Brook to implement a large-
scale computation code for fluid flow, Takahashi and Hamada [22] applied CUDA to accelerate BEM for
the 3D Helmholtz equation and Joldes et al. [23] presented the application of a CUDA-based nonlinear
FEM for real-time simulation of the neurosurgical process. Normally, the implementation of a GPU code
will require certain knowledge of the operation of GPU at hardware layer. Overall, GPU computing is a
sheared memory system, and it is a promising solution for PHPC. It also provides a solution for real-time
numerical simulation. However, the hardware and software platforms of GPU computing are still under
development. For example, the double precision GPU card will be available in a few months, and CUDA

Input Assembler

v v v v

Thread Processors Thread Processors Thread Processors Thread Processors

lobal Memory

Figure 2. The NVIDIA GeForce 8 graphics processor architecture (redrawn based on [17]).

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2011)
DOI: 10.1002/nag

G.-F. ZHAO ET AL.

will support C++ in the future. Taking into account this delay, waiting for the technique to mature is still a
good choice.

Modern supercomputer often refers to a computer cluster, which is a collection of computers
connected through a high-speed network. A cluster computer is a high-level parallelization system.
The most powerful computers in the world always involve clusters [24]. Newly developed
technologies on high-performance computing (e.g. multicore CPU and GPU) can always be merged
into a cluster system. For example, the fifth-ranked Tianhe-1 supercomputer has integrated multicore
CPUs with GPUs [24]. The architecture of clusters is normally based on a modular concept, which can
be simply regarded as a group of specific computers connected through the Internet for working
together. For example, the cluster used in this work, Pleiades2 [25] at Ecole Polytechnique Federale de
Lausanne (EPFL), is built on a gigabit Ethernet network, as shown in Figure 3. The message passing
interface (MPI) [26] and the parallel virtual machine [27] are programming tools for parallelization
implementation under a cluster environment. In this study, the free MPI library MPICH (developed at
Argonne National Lab) [28] was used. There are different kinds of parallel numerical codes for
geomechanics that are developed under a cluster environment using MPI; for example, Maknickas
et al. [29] implemented a parallel DEM code for modeling granular media, Singh and Jain [30]
developed a parallel meshless method EFG code for fluid flow simulation, Komatitsch et al. [31]
designed a high-order FEM parallel code for seismic wave propagation and Wang et al. [32] used MPI
to parallelize the FEM for thermo-hydro-mechanical-coupled problems in porous media. Recently,
some researchers also try to combine different parallel techniques; for example, Tang et al. [33]
coupled MPI with OpenMP for groundwater simulation and Yang et al. [34] proposed a hybrid
CUDA, OpenMP and MPI programming approach. As a cluster is a distributed memory system, the
model decomposition and communications between different processors (computer nodes) should be
handled explicitly. Thus, a certain amount of modification of the original DLSM code is required.
Moreover, the operation system used in a cluster is different from that in a PC. For example, a standard
SUSE Linux is used as the operation system in a Pleiades2 cluster. How to integrate different
operation systems in a PC and in a cluster is also a problem facing the parallelization of DLSM.

In this paper, DLSM will be parallelized both for a multicore PC based on OpenMP and for a cluster
based on MPI. After a brief description of DLSM, the implementation of the parallel DLSM under different
platforms will be presented. Then, the performance of the parallel DLSM codes will be tested on different
computers. Finally, some conclusions on the parallelization of DLSM will be derived.

o
FE: Front End Node
CN: Compute Node
10: WO Node
Q| 210 bi dual-core, 2.67 GHz, 8GB Mem
=l — (100 Dell PE1950, 110 Fujitsu-Si RX200)
ol
w |
2|
| L I B]
lieee @ ot
(L] 3%
E 10.0.0.0 . 3 5 E
® SWITCH Black Diamond 8810 = T §
N Q 432 Gbl/s, 384 GbE ports * 8%
{ID'm 5 i‘ o4
g2y @ aok
S =52
& g E " i
83z
3@ e 128PE1425238 GHZ/4GB MeM ———————p
5%

Figure 3. Current configuration of the Pleiades2 cluster from EPFL [25].

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2011)
DOI: 10.1002/nag

PARALLELIZATION OF THE DISTINCT LATTICE SPRING MODEL

2. DLSM

The origin of lattice spring model (LSM) may be traced back to the work of Hrennikoff [35] in 1941.
However, the method had little success due to the limitation of computer power during those times. In
recent years, researchers have renewed their interest in LSM modeling techniques, as they found that
these models are very suitable for the modeling of failure (e.g. [36,37]). It is known that Poisson’s ratio
obtains, by classical LSM, in the limit of an infinite number of particles, a fixed value, which is 0.25
for 3D cases and 0.33 for 2D cases. Recently, this restriction is solved in DLSM [1,38], in which shear
springs based on local strain rather than the particle displacements are introduced to keep the rotational
invariance. DLSM has the following characteristics: (i) materials are discretized into particles that are
connected through spring-type forces; (ii) the macro-mechanical response is derived from the
microscopic interactions between particles; (iii) the material failure at the continuous level is captured
naturally from the spring failure at the microdiscontinuous level; and (iv) complex constitutive
relationship and contact mechanisms are readily implemented.

2.1. Physical model and system equations

In DLSM, the material is discretized into mass particles with different sizes. The two particles are
linked together through a bond between their center points (as shown in Figure 4(a)), which consists of
normal and shear springs. The bond will turn into contacts between the particles when failure happens.
The particles and bonds form a network system representing the material. For this system, its equation
of motion can be expressed as

[Klu + [Clu+ [M] i = F(7) (1

where u represent the vector of particle displacement, [K] the stiffness matrix, [M] the diagonal mass
matrix, [C] the damping matrix, and F(#) the vector of external force. Equation (1) is solved by using
Newton’s second law. The calculation cycle is illustrated in Figure 4(b). Given the particle
displacements, new contacts and broken bonds are detected. The list of neighboring particles for each
particle is updated. Then, contact and spring forces between particles are calculated according to the
prescribed force—displacement relations. The particle velocity is advanced individually as

Particle model \ ‘ ;ﬁli ﬁiﬁm / <
New positions of particles

v

Calculate unbalance force from
particle bonds

v

Newton’s second law

v

Update positions of particles ‘

o omma |

(@) The physical model of DLSM (b) Calculation cycle

Figure 4. The physical model and the calculation cycle of DLSM.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2011)
DOI: 10.1002/nag

G.-F. ZHAO ET AL.

F
u(iI+At/2) _ uﬁ.”‘"/z) +Z I Ay)
mp

t+Al/2) (t—A4t/2)

where u; is the particle velocity at 7+ A41/2, u the particle velocity at t— 4t/2, m,, the particle
mass, ZF the sum of forces acting on the pamcle i including applied external forces, and At the time
step. Flnally, the new displacement of particle is obtained as

l.ll(~l+At) _ ul(_z) + u§t+Az/2)At 3)

where ul(&m) is the displacement at ¢+ 4¢ and ul(-') the displacement at 7. It should be mentioned that the

calculation cycle in Figure 4(b) is performed independently for all the particles. This feature means
that the model is very suitable for parallelization.

2.2. Interactions between particles

Figure 5(a) shows the forces exerted on one particle. These forces are made up of the external force
and contact force between particles. The interaction between linked particles is represented by one

E, z k,
F4 Funblance = E‘ + 2 Fj

j=1

E
2
P P
K
K
E
F
n R Pj
a) The forces on one particle b) The normal and shear springs
p pring
Fn A
F
max g
o, u”|
F’| A
max max v
_6; 5? us
(c) The shear and normal displacement (d) Constitutive laws of lattice springs

Figure 5. The force and displacement relationships between two particles and the microconstitutive laws.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2011)
DOI: 10.1002/nag

PARALLELIZATION OF THE DISTINCT LATTICE SPRING MODEL

normal spring and one shear spring, as illustrated in Figure 5(b). The normal force between the two
particles is defined as

¥ = k))

where k,, is the stiffness of the normal spring and uj; = (ui]- ° u)n is the vector of normal displacement,
the normal unit vector n:(nx, ny, nz) pointing form particle i to particle j and w;=u;—u;
(see Figure 5(c)). Then, the shearing force between the two particles reads
o AS
Fj =k)
where k; is the stiffness of the shear spring and ﬁfj is the shear displacement vector obtained from a
local strain-based method to keep it rotationally invariant as

s

n; = [E]bond'nl_(([e]bond'nl) ~n)n (6)

where [€],,,4 18 the strain state of the bond and / is the bond length. In DLSM, the local strain of one
particle is evaluated by a least-square scheme that only uses its displacement and other particles that
have intact bonds with the particle (see Figure 5(a)). By doing so, discontinuities (e.g. fracture/crack)
could be directly considered without using the ‘visibility criterion” adopted by most meshless methods.
Details and validation examples of DLSM on elastic and elastic dynamic problems can be found in
[1,38].

2.3. Constitutive law in DLSM

Constitutive law for the bond spring in DLSM can be the simplest brittle linear one (see Figure 5(d)).
Yet, it is not enough to describe the complex mechanical behavior of rock material. A more complex
microconstitutive law can be implemented easily, as presented in [38]. Firstly, consider the force—
deformation relationship of the normal spring satisfying the curve shown in Figure 6(a), where u,
represents the normal deformation of the bond spring, u;, is the ultimate deformation, J, is the ratio of
the deformation at the hardening point to the ultimate deformation, and J, is the ratio of the
deformation at the softening point to the ultimate deformation. It can be seen that the curve can fully
represent the linear stage, the hardening stage and the softening stage of the normal bond spring.
Instead of directly providing the force—displacement relationship, a damage variable function is
defined as

];(”n)
ko

D(u,) =1-— @)

where kg is the initial stiffness and k (,) is the secant modulus when the bond deformation is u,. The
damage variable is initially equal to zero when the spring is intact and finally turns to 1 when the
spring is totally broken. The damage variable function corresponding to Figure 6(a) is shown in
Figure 6(b). Given a damage variable function, the force—displacement relationship can easily be
obtained as

f(un) = (1 = D(uyn))kottn (3)

where f(u,) is the spring interaction force when the spring deformation is u,. Different
microconstitutive laws can be realized by developing different damage variable functions. In this
section, displacement is used as the synonym of deformation. Microparameters u, 31, 6,, andK" are
selected to identify the damage variable function for the normal spring. K¢ is the ratio of secant
modulus at the softening point to the initial stiffness. Damage variable functions are constructed based
on these parameters.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2011)
DOI: 10.1002/nag

G.-F. ZHAO ET AL.

hardening

softening

0 . u,
(a) Force-deformation curve of normal spring
Iy
[5)
=)
I}
£
<
a
1.0 ;
Phase 11T i
Phase IT i
Phase I i
0 S, S, u, i,

(b) Damage variable function

Figure 6. The force—deformation relationship and the damage variable function for the normal spring.

For example, a trilinear microconstitutive law for the normal spring is given as

u* 0 OSOC<51
D(u,,) = D, (_n) = D,(OC) = 1-— OC51 - (Kr8d52 - 51)(1 - 0651)/(52 - 51) 51 < O(<52 (9)
1— K8y (0 — 1) /(1 = 8,) 8y < a<l1

where o is introduced to simplify the formulation of the equation. Equation (9) can be rewritten in the
force—displacement form as

kouy, M,1<51u;;
(kredu;;(SQ — kou;‘lél) (Mn — Lt:;él)
M;’;(Sz — M;‘lél

k()lxt;;(sl + (S]MZ < un<52ufla

f= (10)

*
uy — Uy

* * *
kredun(SZ » 521/!” < u,<u,

* g%
w = Un02

where koq=koK™. Assuming ky=1, the force—displacement relationship given by Equation (10) is
plotted in Figure 7. Different constitutive models can be obtained by setting K™ to different values
(see Figure 7). K" is a dimensionless parameter, which can be regarded as the secant stiffness at the
softening point when ky=1. The brittle linear constitutive law is the special case of the trilinear
constitutive law when 0;=9,=1.0 and K™=0. The widely used bilinear constitutive law is obtained
when 6,=1.0 and K"=0. Using the damage variable function, nonlinear microconstitutive law has

also been developed [38]. An example is given as follows:

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2011)
DOI: 10.1002/nag

PARALLELIZATION OF THE DISTINCT LATTICE SPRING MODEL

0.4r

------- K*=0.25

0.351 K05

0O 02 04 06 08 1 12 14 16 18 2
Displacement

Figure 7. Force—displacement curve of the trilinear constitutive law under different values of K",

0 0<O€<5]
D(u,) =D () =D()={1—-ad — ﬁoc(Kmdéz - 5])de”d 01 < a<o, (11)
1 — (1= pB)ad; — PoK™ (o —1)/(1 = &,) 6y < a<l

where =0.3 and d=(a— 0,)/(0,— ;). The corresponding force—displacement relationship for ky=1 is
shown in Figure 8.

The constitutive law for shear spring can be introduced following the same damage variable
function and the corresponding nondimensional parameters as those for the normal spring. The
proposed nonlinear constitutive laws can take into account the nonlinear behavior of bonds in DLSM.
The influence of these parameters of the microconstitutive model on the final macromechanical
behavior of DLSM was presented in [38]. Yet, it is found that the ratio of compressive strength to
tensile strength for DLSM is lower than that for rock materials (typically around 10-12). It is around
seven for the regular lattice model and three for the random lattice model. A similar problem was
observed in the particle-based DEM code. The reason is attributed to the smooth shape of circular
particles [39]. In this paper, the developed high-performance DLSM will also be used to provide a
microscopic explanation of this phenomena.

0.35
........ Kred=0.1
o3t e Kred=0.25
Kred=0 5

0.25

0.2r

Force

0.1}

0.05 |

n J

0 1 1 1 1 I L 1
0O 02 04 06 08 1 12 14 16 18 2
Displacement

Figure 8. Force—displacement curves of the nonlinear constitutive law under different values of K.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2011)
DOI: 10.1002/nag

G.-F. ZHAO ET AL.

3. PARALLELIZATION OF DLSM

In DLSM, Equations (2) to (6) are the main computational cost procedures. Thus, in order to
parallelize DLSM, we need to have these equations calculated in parallel. In this article, two
parallelization methods (OpenMP and MPI) are used to realize this task.

3.1. Multicore DLSM

This section will present the parallel implementation of the DLSM code based on OpenMP. The
motivation is to reduce computational time on multicore PCs. As DLSM is an explicit method in time,
only minor changes are needed to parallelize the code. Quad-core PC is quite common now, but the
serial code cannot efficiently utilize its computing resources. OpenMP provides a useful tool to
parallelize software for a multicore environment. It is an application program interface that is
composed of compiler directives, runtime library routines and environment variables. It can work
under the compiler environments of FORTRAN, C and C++. A fork-joint model is used in OpenMP to
parallelize a task. Hereafter, the parallel DLSM code based on OpenMP is named the multicore
DLSM. As the shared memory strategy is used in multicore DLSM, Equations (2) to (6) can be simply
parallelized without communication between different CPUs.

The work scheme of the serial and multicore DLSM are shown in Figure 9. It can be seen that the
serial DLSM code has only one main thread and that the force and displacement of particles are
calculated sequentially (as shown in Figure 9(a)). The multicore DLSM uses the fork-joint model to let
one cycle be calculated by more than one processor (see Figure 9(b)). The parallel DLSM works as
follows. Firstly, the master thread is activated when DLSM begins execution. Then, when the master
thread executes the points where parallel operations are required, the master thread forks and
additional threads are used to realize parallel computing.

In multicore DLSM, the force calculation and the displacement update are the only procedures needed
to be parallelized. Only a few macros are added to produce a fork for a single loop. For example, the code

for(int 1=0;1 <N;i++)

calculate_the_particle_force/displacement;

}

can be easily OpenMP-paralleled as

int i;
#pragma omp parallel for
for(i=0;1 < N;i++)
{
calculate_the_particle_force/displacement;

}

It can be seen that only a few modifications are made for the OpenMP implementation. These
modifications can greatly speed up the computational performance of the original DLSM code.
Thus, from an input point of view, the achieved benefits are actually very attractive. It is
important to fully utilize the cache memory in the OpenMP implementation. In multicore DLSM,
it is roughly achieved by using local variables for the massive complex operation, i.e. the local
strain computation.

3.2. Cluster DLSM

The multicore DLSM aims at the full utilization of the computing resources on a multicore PC.
Although the 80-core CPU already exists in prototype and may be available for practical usage in
the near future, the limitation on available cores and memory in a normal PC cannot be removed
completely. Speed-up of the multicore DLSM shall be limited eventually. Moreover, the shared
memory strategy also limits the modeling capability of the multicore DLSM. In this section, the

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2011)
DOI: 10.1002/nag

PARALLELIZATION OF THE DISTINCT LATTICE SPRING MODEL

T T 2
| |
oA PRGN [e [T
force task displacement task
(a) serial DLSM
(T T T T 2
|
DLSM thread | I
| |
| |
force task displacement task
(b) parallel DLSM

Figure 9. Scheme of serial and parallel implementation of DLSM.

Figure 10. Decomposition of the simulation domain & into 16 subdomains.

X2 X

eI

Figure 11. Communication scheme used in cluster DLSM.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2011)
DOI: 10.1002/nag

G.-F. ZHAO ET AL.

MPI-based parallelization of DLSM on cluster will be presented to solve these problems. It is
named the cluster DLSM in order to distinguish it from the previous one for multicore PC.

3.2.1. Parallelization strategy. The domain decomposition is used as the parallelization strategy for
the cluster DLSM. Firstly, the simulation domain is divided into many small cubic cells (see
Figure 10). Each cell contains a list of the particles under it. Secondly, the simulation domain is
divided into a number of subdomains (larger cubes) based on these small cubes. Each subdomain
contains a number of small cubes. Particles in each subdomain are distributed to a processor to be

Data files
Result files
(1)Pre process
(2)Parallel data prepare
(4)Parallel result files integrate (3) Parallel computing
(5)Post process

(a) work flow at hardware layer

DomainCutter 1.0

RockBox DLSM3D 1.0 DLSM3D Cluster 1.0

DLSM3D Collector 1.0

Data file
<_ — o — i —— — — — — — —
Windows
(b) work flow at software layer
Figure 12. Work flow of parallel DLSM under a cluster enviroment.
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2011)

DOI: 10.1002/nag

PARALLELIZATION OF THE DISTINCT LATTICE SPRING MODEL

calculated separately from the others. This scheme is called the linked cell method in MD
parallelization [40,41]. The number of subdomains is equal to the number of processors used in the
simulation. We have the following relation:

np = npy X npy X np; (12)

where np is the number of total processors (subdomains) and np,, np,, np, are the number of
dividing in each direction of the model. A decomposition code (domain cutter) is designed to produce,
for each subdomain, the data files, the information of corresponding neighbors and the index of
particles needed to be communicated. The decomposition can be finished automatically after np,, np,,
np, are given.

In cluster DLSM, the force calculation procedure has to use the information of the particles that do
not belong to the current processor. Communication is needed to exchange the necessary information
between different processors. In a 3D case, a typical subdomain has 26 neighbors. This will cause a
large number of communication operations to be performed. By using a proper communication
methodology [41], this number can be reduced to six. The communication strategy is shown in
Figure 11. First, the data are exchanged in x3 direction (left); then, the data are exchanged in x2
direction (middle), and finally, the data are exchanged in x1 direction (right). In Figure 11, green cells
always send the data to the yellow cells, and the yellow cells always receive the data from the green
cells. Data are exchanged mutually between two neighboring face-to-face subdomains. The range of
exchanging cells in each direction is different so that communication between the corner-to-corner
neighbors is avoided. It can be seen that only six sending and receiving operations need to be
performed. The exchanged data include position, velocity, displacement and strain state of the
neighbor particles.

3.2.2. Implementation. In this section, the MPI implementation of DLSM on cluster will be presented.
The parallel implementation includes not only the MPI communication part but also the model
preprocessing, solving and postprocessing. Figure 12 shows the work flow of cluster DLSM. Since the
PC is user-friendly and the cluster is much powerful in computing, the basic idea of this design is to let
the PC deal with the preprocessing and postprocessing parts while the cluster deals with the solving part.
At the hardware layer, a server/client mode is used. The PC is used as the client, and the cluster is used as
the server for parallel computing (see Figure 12(a)). At the software layer, the computing task is done
through cooperation between the different codes running in Windows and Linux operating systems (see
Figure 12(b)). Firstly, the input data files are prepared by using a GUI program (RockBox DLSM3D)
developed for Windows. When these data files are ready, they are sent to the cluster through a network.
Then, the parallel DLSM solver in the cluster reads these files, solves the problem and produces the
corresponding result files. Finally, the result files are copied to the PC through the network and are
transformed by a postprocessing code (DLSM3D Collector) into a format that can be processed on the
PC using RockBox DLSM3D. This design makes the whole parallelization work focus only on the MPI
implementation of the solver. The preprocessor and postprocessor still use the serial version developed
for PC. By doing so, the respective advantages of different machines (cluster and PC) and different
operation systems (Windows and Linux) are fully utilized.

In the following discussion, the MPI implementation of DLSM will be presented. The goal is to run
DLSM on a number of allocated processors in cluster through the domain decomposition approach.
Data communication between different processors is realized through an MPI programming
environment. MPI provides a library that allows the simultaneous initiation of a given number of
processes and the assigning of a unique identity number for each process. It also provides
communication functions that can be called to exchange the data between different processors. There
are more than one hundred functions provided in the MPI library. Fortunately, the parallelization of
DLSM only uses seven of them. They are MPI_Init, MPI_Comm_size, MPI_Comm_rank,
MPI_Barrier, MPI_Isend, MPI_Recv and MPI_Finalize. A few modifications are needed for the
parallelization of DLSM based on these MPI functions. For the main function of the DLSM code,
three MPI functions are used as follows:

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2011)
DOI: 10.1002/nag

G.-F. ZHAO ET AL.

int myid, numprocs

double start,finish

MPI_Init(&argc,&argv)
MPI_Comm_rank(MPI_COMM_WORLD,&myid)
MPI_Comm_size(MPI_COMM_WORLD,&numprocs)
DLSM_Main_Function

MPI_Finalize()

The other two important MPI functions for data communication are used as

double pBuffer [nCount];
MPI_Recv(pBuffer, nCount, MPI_DOUBLE, iD_Send, iTag, MPI COMM_WORLD, &status)
Read_Buffer_Data_To_Model;

double pBuffer [nCount];
Read_Buffer_From_Model;
MPI_Isend(pBuffer, nCount, MPI_ DOUBLE, iD_Receive, iTag, MPI_ COMM_WORLD, &request);

When the force calculation procedure is executed in cluster DLSM, particle information will be
exchanged between processors by using the above subroutines according to the communication
scheme shown in Figure 11. Currently, the case of a particle moving out of the present processor and
entering into another processor is not considered because the communication of bond information
between different processors is difficult. Problems involving dynamic contact detection can also be
solved if the relative deformation between any two neighboring subdomains is not too large compared
to the size of the cell, so that it would be sufficient to use only the neighboring particles as the cushion
layer between the two subdomains.

In cluster DLSM, contact detection and particle position update, failure treatment and results output
will be processed separately for different processors. During the calculation, each process outputs its
own results to a separate file, which is identified by the process number. These files can be combined
into a single file and be postprocessed on a PC.

4. PERFORMANCE EVALUATION

In this section, the different parallel DLSM codes are tested on different parallel computers. There are
a large number of commonly used performance measures in evaluating a parallel code. In this article,
the speed-up S is adopted. It is defined as the ratio between the parallel runtime for a given number of
CPUs and the serial runtime [42], i.e.

gl (13)
ts

where ¢, is the runtime of the serial code using the best optimization and £, is the runtime of the parallel
code for the same problem. Another important index is the efficiency, E”", which is the ratio between
the speed-up and the number of used CPUs, i.e.

S
EP =2 (14)
n

It is helpful in determining the proper n to be used. The speed-up S can never exceed the number of
used CPUs. Thus, E”" should satisfy

0<E™<1 (15)

In this paper, both multicore PC and cluster are equipped with a different core CPU (e.g. 1/2/4/
8 core CPU were used in the Pleiades2 cluster). In order to maintain consistency, the term CPU is used
to refer to the computing core rather than the physically separate CPU.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2011)
DOI: 10.1002/nag

PARALLELIZATION OF THE DISTINCT LATTICE SPRING MODEL

4.1. Multicore DLSM

A Brazilian disc model with 157,200 particles is calculated on two types of quad-core PCs. The elastic
properties of the modeled material are E=36GPa and v=0.2. The diameter of the disc is taken as 50
mm and the thickness is 10mm. The parameters of the two multicore PCs used are listed in Table I.
Figure 13 shows the simulation results obtained by the serial and multicore DLSM codes. It can be
seen that the results obtained by the two codes are identical. This indicates that the parallel
implementation is correct. It is found that the serial code cannot take full advantage of the multicore
PC. Only 8% computing resource is used for the serial DLSM code, but this number increases to 88%
for the multicore DLSM code. This means that OpenMP implementation is effective and that the
computing resources can be fully utilized. The speed-up of the multicore DLSM has been tested on the
first quad-core PC. The second one is used only to obtain the maximal speed-up of the multicore
DLSM using the available PCs in LMR. It is attributed to the super thread technology used in the
second PC. Yet, when the multicore DLSM code is running on this computer, it is hard to control, and
it displays the type of the computing unit used (super thread or CPU core). Thus, results from the
second PC are not suitable for speed-up analysis.

The Brazilian disc model is simulated on the first quad-core PC. The computing time of the
multicore DLSM is compared with that of the serial DLSM, and the results are given in Figure 14. It
can be seen that the serial code is a little faster than the multicore code when only one CPU is used.

Table I. Parameters of the quad-core PCs used.

CPU name Cores Super thread Speed Memory
Intel Xeon 4 No 2.40GHz 3GB
Intel Core i7 950 4 Yes 3.07GHz 6GB

=8 212e-004 =5.212e=004

=4 4 Te- 004 =4 46Te=-004

=3 TEke-0Dd =3.T22e-004

=287Te=004 ~2977e-004

=2 2320-004 =2232e-004

=148Te-0D4 =1 487e-004

= T418e-005 = 741 D= 005

31530007 31 53-007

T4818-005 Takle-00%

1.493@- 004 1.4500- 004

2.238¢- 004 2 238e-004

(a) Serial code (b) Parallel code (4 CPUs)

Figure 13. Simulation results obtained from the serial and parallel DLSM codes (contour map of &,,).

250000

200000 = Computation time (ms)
150000
100000 | i

50000 -] B l

0+
Serial 1CPU 2CPUs 3CPUs 4CPUs

Figure 14. Computational time of the multicore DLSM with different CPUs.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2011)
DOI: 10.1002/nag

G.-F. ZHAO ET AL.

This is because the parallel code inserts some instructions into the original code, which requires some
additional computing time. However, when two cores are used, the speed of the multicore DLSM
obviously becomes faster.

In order to study the influence of model size on speed-up, three models, Model A (2445 particles),
Model B (19,760 particles) and Model C (157,200 particles), are computed by using both the serial
DLSM code and the parallel DLSM code on the first PC. The speed-up of the parallel code is shown in
Figure 15. Results show that the speed-up of the multicore DLSM varies with the size of the simulated
model nonmonotonically. Overall, the trend is the same for different model sizes, and a speed-up value
of around 2 could be achieved using the first PC.

In order to know the maximal speed-up of the multicore DLSM code, a Brazilian disc model with
78,500 particles is calculated on the second PC. It is a static simulation, and in order to obtain the
equilibrium state, 20,000 cycles are calculated. The computing time is 86.16 minutes for the serial code,
whereas it is reduced to 18.43 minutes for the parallel code. A speed-up of 4.68x is achieved. It is much
higher than that obtained in the first PC. This is due to the fact that the CPU used in the second PC is
more advanced than that in the first one, e.g. larger cache and the super thread technique. A 4.68x
speed-up is desirable for practical application, e.g. a simulation previously taking 4days could now be
finished in 1day. Now, it can be concluded that the implementation of the multicore DLSM is successful.

4.2. Cluster DLSM

In this section, the performance of the cluster DLSM code is tested. The test problem is shown in Figure 16.
DLSM is used to simulate the fragmentation process of a rock specimen under one tunnel boring machine
(TBM) cutter. The particle size is 1 mm, and the model dimension is 400mm x 5mm x 200mm. The

2.5
2 4
%
D 154
°
@
0]
Q1
n —o—Model A
0.5 - - Model B
~#=Model C
O T T T 1
1 2 3 4

CPUs

Figure 15. Speedup of the multicore DLSM code.

v=100mm/s

Figure 16. Scheme of single TBM cutter—induced fragmentation problem.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2011)
DOI: 10.1002/nag

PARALLELIZATION OF THE DISTINCT LATTICE SPRING MODEL

material properties of the rock are taken as follows: the elastic modulus is 40 GPa, the Poisson’s ratio is 0.25
and the density is 2650kg/m’. The simple brittle constitutive law is adopted here. The ultimate bond
deformation is given as 1.3e—4mm. Except for the top loading surface, all other surfaces are fixed of the
displacement in their normal directions. The applied loading rate is 100m/s, which is applied on a small
surface with a width of 12mm for a duration of 10ms. The time step is taken as 1077 s; thus, around 100,000
cycles are needed for the simulation. The model is composed of 400,000 particles. The decomposition of
DLSM for different cases is shown in Figure 17. Due to the limitation of available CPUs in the cluster, the
maximum number of CPUs used to evaluate the speed-up of the cluster DLSM is 256. Figure 18 shows the
simulation results of cluster DLSM. It turns out that cluster DLSM can work correctly with a large number
of CPUs simultaneously involved in the computing.

When a parallel job is finished, a record file will be produced. Information of computing time can be
found in this file, such as the total CPU time (the summed machine time of the allocated nodes) and the
wall time (the actual time used in the cluster). The code itself also prints the computing time of the
processor whose rank number equals zero, which is called the code time. These data for different cases
are listed in Table II. It is found that, considering only the code time, a perfect linear speed-up is
obtained. However, after careful investigation, it is found that it is not scientific to calculate the speed-
up through the code time because it omits the I/O operation and the communication time. For this
reason, the speed-up is calculated based on the wall time spent for each case. It can be seen that a
maximal speed-up of 40.88x is achieved for the cluster DLSM code.

As mentioned before, the advantage of the cluster DLSM code is not only making the computing time
shorter but also making it possile to solve problems that are beyond the capacity of a normal PC. It has
been found that when the number of particles in DLSM exceeds one million (more than ten million
bonds), it will become unsolvable for a normal PC because of the limitation of its memory space. As
distributed memory is used in cluster DLSM, this problem can be easily solved by using an adequate
number of processors in the cluster. In the following, the 3D case of the TBM cutter problem (as shown
in Figure 19) is chosen as a demonstration example. For this problem, at a medium discretization level,
even one quarter of the model needs four million particles. It exceeds the memory limit of a normal PC.
Now, the problem is solved by the cluster DLSM code using 128 CPUs on Pleiades2. The simulation
results are shown in Figure 20. Currently, the maximum number of particles for cluster DLSM is around
four millions due to the limitation of the preprocessor and postprocessor. In the following sections, two
examples will be presented to show the ability of the parallel DLSM code on geomechanics.

5. APPLICATION

5.1. Microcompressive failure of rock material

The DLSM is a microstructure-based model that is made up of physical springs and Newton’s second
law. The failure law used in the model is also simple; that is, it is based on the distance between two

8 CPUs 16 CPUs 32 CPUs

64 CPUs 128 CPUs 256 CPUs

Figure 17. Domain decompostion for the TBM-induced fragmentation problem.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2011)
DOI: 10.1002/nag

G.-F. ZHAO ET AL.

=1.359e-004
-1.116e-004
-B.739e-005
-B316e-005
-3892e-005
: -1.459-00S
3.542¢-006
| 1.378e-005
5.801e-005
8.22de-005

1.085¢-004
(a) Contour map of &,

0.0008+000
1.0002- 007
2.000e-001
3.0002-001
4.0002-00
5.000=- 001
6.0002-001
7.000e-001
. 000=- 001
9.000=-001
1.000e+000

(b) Crack pattern (broken particle marked with red)

Figure 18. Simulation results of cluster DLSM using 256 CPUs.

Table II. Performance analysis results of the cluster DLSM code.

CPUs Total CPU time (s) Code time (s) Wall time (s) S EP" (%)
1 2858 2859.61 2862 1 100
4 3557 893.25 901 3.1765 79
8 3508 435.01 488 5.8648 73
16 3308 199.04 426 6.7183 42
32 2990 89.96 196 14.602 46
64 2866 40.49 144 19.875 31
128 2705 18.87 88 32.523 25
256 2748 10.89 70 40.886 16

particles. For this reason, the model is suitable to use in studying some aspects of rock mechanics, e.g.
the loading rate effect of rock material failure and strength. In this example, we will study the
compressive failure of rock materials based on their microscopic structures. It is known that the ratio
of compressive strength to tensile strength is much lower in particle-based numerical codes. In this
section, a possible solution for this problem will be tested. High-resolution DLSM is built based on the
microstructure information taken from a digital picture of rock material (see Figure 21). The physical
size of the image is 1 mm x 1 mm. DLSM based on this image can be built as shown in Figure 21(b).
Here, the particle size is 5pm. The mechanical properties are taken as follows: the elastic modulus is

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2011)
DOI: 10.1002/nag

PARALLELIZATION OF THE DISTINCT LATTICE SPRING MODEL

v=100mmv's

“a model

200mm

-5 5540 003
-4 8420 003
-4 3300- 003
-37170-003
-3 1054003
-2 4920 003
-1 BENe- 003
-1.268e- 003
-6 5616 04
-4 3050 005
$88%e- 004

contour map of & crack pattern
p - p

Figure 20. The 3D simulation results of the TBM cutter—induced fragmentation.

36GPa, the Poisson’s ratio is 0.25 and the density is 2450kg/m’. The simple brittle constitutive law is
adopted. The ultimate bond deformation is 2.0e—4pum for bonds formed by particles with different
materials and 2.0e-3 pum for those linked with the same material. A velocity of +0.01 mm/s is applied
on the top and bottom surface to produce a piston-like uniaxial tensile/compressive loading. The
corresponding strain rate is 5e—2/s, which produces a quasi-static simulation (the strain rate of
conventional static tests on rock materials is around 107 to 107'/s). The total particle number is
200,000. For the tensile simulation, it takes half a day in a normal PC. Yet, the compressive test will
spend around 5days, which is too long. Thus, cluster DLSM with 32 CPUs is used to tackle this
problem. The obtained strain—stress curves of uniaxial tensile and compressive tests are shown in
Figure 22. It shows that the ratio of compressive strength to tensile strength predicted by DLSM with
detailed microstructure is 12.35. This value is actually the typical value for the ratio of compressive
strength to tensile strength in rock materials. It reviews that the microstructure of rock material
controls the compressive failure of rock material (without this true microstructure information, the
predicted compressive strength is much lower). The different packing of particles can lead to different
fracture patterns [1,38]. The regular particle packing may be unsuitable for geomaterials. Yet, using
particle cluster methodology based on digital image may overcome this problem.

5.2. Dynamic failure of tunnel under blasting loading
A previous example shows the ability of the parallel DLSM code in saving computing time for the
medium-sized numerical model. In this section, one inaccessible problem for the normal PC will be

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2011)
DOI: 10.1002/nag

(a) Digital picture (taken from [43])

-B.602e- 002
-5273e-002
-3.943e-002
=2 B14g-002
-1.284e-002
451 3e-004
1.375e-002
Z.704e-002
4.034e-002
5.363e-002
6.693e=-002

(d) Tensile failure (uy)

G.-F. ZHAO ET AL.

LA

(b) Plane view (c) 3D view

—2.13:1e-DIJI)
-1.645a+000"
i
-1:155¢+000
~B.B7Ga-001
179%6-001
3.08e-001
7.9808-001
1,267¢+000
1.77584000
2.264€4000

Z.752e<000 "

(e) Compressive failure (uy)

Figure 21. The used microscopic model of rock material (the digital picture taken from [43]) and the
corresponding DLSM modeling of tensileand compressive failure under uniaxial loading (contour map of
displacement in y direction, unit 10~®m).

3.5rx10° 4-x10
al 35}
3,
25t
s S 25
= s
s Ll
[2] [}
3 15} 3
& » 157
1t .l
0.5} 05}
0 1 1 1 1 1] 0 1 L 1 1 1 1 Il]
0o 1 2 4 5 7 8 R 2 3 4 5 6 7 8
_ -4
Strain x10° Strain x10

(a) Uniaxial tensile test

(b) Uniaxial compressive test

Figure 22. The strain—stress curves predicted by cluster DLSM for the uniaxial tensile and compressive

tests.

handled by using cluster DLSM. The dynamic failure of a tunnel under blasting loading is an
important issue for rock engineering, e.g. the safety of the existing tunnel must be well estimated when
a new adjacent tunnel is undergoing blasting. In this section, one example of blasting wave

Copyright © 2011 John Wiley & Sons, Ltd.

Int. J. Numer. Anal. Meth. Geomech. (2011)
DOI: 10.1002/nag

PARALLELIZATION OF THE DISTINCT LATTICE SPRING MODEL

H—_i

}Fi

Discontinuity

60t TNT

¥

24.5m

Detection point (25,20) ——p

4m | 4m

8m

20m

w~
N

16m

1.5m

=

T

Figure 23. Computational model of the blasting wave propagation through rock tunnel problem.

=201 Fa=002
=1130e=-008
~E2i¥e-009
6.7aZe-003
15Me-002
2 4B3w- 002
3 365e-002
4 263e-002
5 160e-002
B D580-002

6955~ 002

-2.01Te-002
=1.326e-002
-6.¥52e-003
5.531e-004
TATOe-002
1.4382-002
22%-002
2 B20e- 002
1571e-00
4.200-002
4, E540-002

) g
=

Case I

Case III

=2 0178-007
-11270-002
-23678-003
£.5372-003

1.5488- 002 \
24342-002
3.3256-002
42150-002
5108002
5 29%a-002

B 58Ee =002

Case II

=201 ¥e=- 002
- 9E0%e- 003
5. 56de- 004
1 EZe-002
2129e-002
165e-002
4 i2e-002
S I30e-002
6.2T5e-002
T e-002
B 34Be-002

Case IV

Figure 24. Contour map of the particle velocity (m/s) in x direction for different computational models at
t=5ms.

Copyright © 2011 John Wiley & Sons, Ltd.

Int. J. Numer. Anal. Meth. Geomech. (2011)
DOI: 10.1002/nag

G.-F. ZHAO ET AL.

propagation through a tunnel will be modeled by cluster DLSM. Figure 23 shows the computational
model and boundary conditions for the problem. The dimension of the model is 50m x 50m x 2m, and
the particle size is 0.125m. The blasting load is applied to the left of the boundary, from 20m to 24m
vertically, to simulate an explosion chamber of 4mx2m. The blasting wave is simplified as a
triangular overpressure history with two phases. The maximum overpressure P, is equal to 30.23
MPa, and the duration of rise phase #; and the total duration f, are 0.5 and 2.5ms, respectively. The
material properties of the rock are taken as follows: the elastic modulus is 74 GPa, the Poisson’s ratio is
0.2 and the density is 2650kg/m’. The ultimate bond deformation is taken as 2.5e-5m, which is
calculated based on the tensile strength of Bukit Timah granite. Discontinuity is represented by setting
a material layer with a weaker elastic modulus, where the weakness ratios are taken as 1.0 (Case I), 0.5
(Case II), 0.1(Case III) and 0.01 (Case IV). For DLSM, more than two million particles are required to
build this computational model, which is surely an inaccessible problem for the normal PC. Yet, with
cluster DLSM, this problem can be tackled easily.

The blasting wave propagation through rock mass and the influence of discontinuity on the failure
pattern of a tunnel under a blasting wave are simulated by cluster DLSM. Figure 24 shows the contour
map of the velocity in a horizontal direction for the computational model under different cases. It can

0.08 ;

Case |
) ——— Case Il

0.06

0.04

0.02

velcoity (m/s)

-0.02

-0.04

-0.06

time (ms)

Figure 25. The velocity histories at the detection point predicted by DLSM computational models for the
maximum peak pressure of 30.23 MPa.

velcoity (m/s)

/ Case |
/| == Caselll
-===-Case lll

time (ms)

Figure 26. The velocity histories at the detection point predicted by DLSM computational models for the
maximum peak pressure of 151.15MPa.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2011)
DOI: 10.1002/nag

PARALLELIZATION OF THE DISTINCT LATTICE SPRING MODEL

be seen that the discontinuities can reflect the blasting wave. Moreover, the recorded velocity histories
during the numerical tests (see Figure 25) reveal that the peak particle velocity (PPV) increases with
the stiffness of the discontinuity. It is found that there is no apparent damage that occurred around the
tunnel under the loading pressure of 30.23MPa. In order to observe the failure pattern of different
models, another set of simulations with a maximum overpressure P, of 151.15MPa is performed.
The recorded velocity histories and the failure pattern of the rock around the tunnel are shown in
Figure 26. It shows that PPV decreases with the stiffness of the discontinuity, whereas the damage
degree of the tunnel increases. Altogether, from the simulation results of this section, it can be
concluded that the damage of a tunnel under dynamic loading can be released through presetting some
weak discontinuity/cavern.

6. CONCLUSIONS

In this paper, the parallelization of DLSM is presented. The available parallel environments are briefly
introduced. Then, the parallelization of DLSM on multicore PC and cluster are presented. The OpenMP
is used to parallelize the DLSM code and make it work effectively on a multicore PC. The OpenMP
implementation needs only a few modifications of the original code. Examples are given to show the
performance of the parallel DLSM code on a multicore PC. It is found that the implementation is
effective and successful. Another version of the code, the cluster DLSM, has been developed for massive
parallel computing using clusters. The parallel DLSM solver on cluster is implemented by using MPL
The whole software package is finished through the cooperation between PC and cluster. The
performance of the cluster DLSM is tested, and a speed-up of 40.88 is achieved in the case using 256
CPUs in a Pleiades?2 cluster. Finally, a few problems, which were previously impossible to handle using
a normal PC, are successfully solved by using the developed cluster DLSM code.

REFERENCES

1. Zhao GF, Fang J, Zhao J. A 3D distinct lattice spring model for elasticity and dynamic failure. Int J Numer Anal
Meth Geomech 2011; 35(8):859-885.
2. http://techfreep.com/intel-80-cores-by-2011.htm, 2010.

3. Owens JD, Houston M, Luebke D, Green S, Stone JE, Phillips JC. GPU computing. Proceedings of the IEEE 2008;
96(5):879-899.

4. http://www.nvidia.com/cuda_home.html, 2010.

5. Baker M, editor. Cluster Computing White Paper. http://www.dcs.port.ac.uk/mab/tfcc/WhitePaper, 2000.

6. Flynn M. Very high-speed computing systems, Proc. IEEE 1966; 54:1901-1909.

7. Chang V. Experiments and investigations for the personal high performance computing (PHPC) built on top of the
64-bit processing and clustering systems. In /3th Annual IEEE International Symposium, IEEE Press: Germany,
2006; 27-30.

8. http://www.openmp.org, 2010.

9. Dick B, Jacqueline F, Bradford N. PThreads Programming. O’Reilly Media: Sebastopol, California, United States
1996.

10. http://www.threadingbuildingblocks.org/, 2010.

11. Tarmyshov KB. Muller-Plathe F. Parallelizing a molecular dynamics algorithm on a multiprocessor workstation
using OpenMP. Journal of Chemical Information and Modeling 2005; 45(6):1943-1952.

12. Zsaki AM. Parallel generation of initial element assemblies for two-dimensional discrete element simulations. Int J
Numer Anal Meth Geomech. 2009; 33(3):377-389.

13. Gao D, Schwartzentruber TE. Optimizations and OpenMP implementation for the direct simulation Monte Carlo
method. Comput Fluid. 2011; 42(1):73-81.

14. Williams JR, Holmes DW, Tilke P. Parallel Computation Particle Methods for Multi-phase Fluid Flow with
Application Oil Reservoir Characterization. Particle-Based Methods: Fundamentals and Applications, Onate E,
Owen D.R.J. (eds.). Springer, 2011; 113-134.

15. Rick M. CPU designers debate multi-core future. EE Times. http://www.eetimes.com/, 2008.

16. http://en.wikipedia.org/wiki/Multi-core_processor#cite_note-1, 2010.

17. Wasson S. NVIDIA’s GeForce 8800 graphics processor, Tech Report, 2007.

18. http://www.opengl.org/, 2010.

19. http://www khronos.org/opencl/, 2010.

20. Elsen E, LeGresley P, Darve E. Large calculation of the flow over a hypersonic vehicle using a GPU. J Comput
Phys, 2008; 227(24):10148-10161.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2011)
DOI: 10.1002/nag

21.
22.
23.
24.
25.
26.
27.
28.
29.

30.
31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

G.-F. ZHAO ET AL.

Anderson JA, Lorenz CD, Travesset A. General purpose molecular dynamics simulations fully implemented on
graphics processing units. J Comput Phys, 2008; 227(10):5342-5359.

Takahashi T, Hamada T. GPU-accelerated boundary element method for Helmholtz’ equation in three dimensions.
Int J Num Meth Eng. 2009; 80(10):1295-1321.

Joldes GR, Wittek A, Miller K. Real-time nonlinear finite element computations on GPU - Application to
neurosurgical simulation. Comput Meth Appl Mech Eng. 2010; 199(49-52):3305-3314.

http://www.top500.org/, 2010.

http://pleiades.epfl.ch/, 2010.

http://www.mpi-forum.org, 2010.

http://www.csm.ornl.gov/pvm/, 2010.

http://www-unix.mcs.anl.gov/mpi/mpich., 2010.

Maknickas A, Kaceniauskas A, Kacianauskas R, Balevicius R, Dziugys A. Paralle]l DEM software for simulation of
granular media. Informatica 2006; 17(2):207-224.

Singh IV, Jain PK. Parallel meshless EFG solution for fluid flow problems. Num Heat Trans, Part B. 2005; 48(1):45-66.
Komatitsch D, Erlebacher G, Goddeke D, Michéa D. High-order finite-element seismic wave propagation modeling
with MPI on a large GPU cluster. Journal of Computational Physics 2010; 229(20):7692-7714.

Wang W, Kosakowski G, Kolditz O. A parallel finite element scheme for thermo-hydro-mechanical (THM) coupled
problems in porous media. Computers and Geosciences 2009; 35(8):1631-1641.

Tang G, D’Azevedo EF, Zhang F, Parker JC, Watson DB, Jardine PM. Application of a hybrid MPI/OpenMP
approach for parallel groundwater model calibration using multi-core computers. Comput Geosci. 2010; 36(11):
1451-1460.

Yang CT, Huang CL, Lin CF. Hybrid CUDA, OpenMP, and MPI parallel programming on multicore GPU cluster.
Computer Physics Communications 2011; 182(1):266-269.

Hrennikoff A. Solution of problems of elasticity by the framework method. ASME J. Appl. Mech. 1941; 8:
A619-A715.

Hahn M, Wallmersperger T, Kroplin BH. Discrete element representation of continua: proof of concept and
determination of the material parameters. Computational Materials Science 2010; 50:391-402.

Darve F, Nicot F. On incremental non-linearity in granular media: phenomenological and multi-scale views (Part I).
Int. J. Numer. Anal. Meth. Geomech. 2005; 29:1387—-14009.

Zhao GF. Development of micro-macro continuum-discontinuum coupled numerical method. Phd thesis. EPFL:
Switzerland, 2010.

Yoon JS. Application of experimental design and optimization to PFC model calibration in uniaxial compression
simulation. Int. J. Rock Mech. & Min.Sci. 2007; 44:871-889.

Kadau K, Germann TC, Lomdahl PS. Large-scale molecular dynamics simulations of 19 Billion Particles. Int J
Modern Phys C 2004; 15(1):193-201.

Michael G, Stephan K. Gerhard Z. Numerical simulation in molecular dynamics: Springer, 2007.

Kumar V, Grama A, Gupta A, Karypis G. Introduction to parallel computing: design and analysis of Algorithms.
Benjamin/Cummings, 1994.

Walker I. An introduction to mineralogical terms and observations with the Leica CME. http://www.microscopy-uk.
org.uk/mag/artfebO4/iwouslides.html, 2010.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2011)

DOI: 10.1002/nag

